Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates
Commentationes Mathematicae, Tome 47 (2007) no. 2, pp. 141-148
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
The purpose of this paper is to present strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial inequalities in relatively arbitrary \((n+1)\)-dimensional time-space sets more general than the cylindrical domain.
Mots-clés :
infinite systems, parabolic differential-functional inequalities, strong maximum principle
@article{10_14708_cm_v47i2_5244,
author = {Jolanta Brandys},
title = {Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates},
journal = {Commentationes Mathematicae},
pages = { 141--148},
year = {2007},
volume = {47},
number = {2},
doi = {10.14708/cm.v47i2.5244},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5244/}
}
TY - JOUR AU - Jolanta Brandys TI - Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates JO - Commentationes Mathematicae PY - 2007 SP - 141 EP - 148 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5244/ DO - 10.14708/cm.v47i2.5244 LA - pl ID - 10_14708_cm_v47i2_5244 ER -
%0 Journal Article %A Jolanta Brandys %T Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates %J Commentationes Mathematicae %D 2007 %P 141-148 %V 47 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14708/cm.v47i2.5244/ %R 10.14708/cm.v47i2.5244 %G pl %F 10_14708_cm_v47i2_5244
Jolanta Brandys. Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates. Commentationes Mathematicae, Tome 47 (2007) no. 2, pp. 141-148. doi: 10.14708/cm.v47i2.5244
Cité par Sources :