Holomorphons and the standard almost complex structure on \(S^6\)
Commentationes Mathematicae, Tome 46 (2006) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We consider Euler–Lagrange equations of families of nonnegative functionals defined on tensor fields of the type (1, 1), which are equal to zero only for complex structures tensor fields. As a solution of the equations we define the notion of holomorphon to distinguish a new class of tensor fields on Riemannian manifolds. Next, as our main result, we construct a holomorphon on the 6-dimensional sphere \(S^6\).
DOI : 10.14708/cm.v46i2.5220
Mots-clés : Riemannian geometry, almost complex structure, Nijenhuis tensor, variational principle
@article{10_14708_cm_v46i2_5220,
     author = {Jan Milewski},
     title = {Holomorphons and the standard almost complex structure on {\(S^6\)}},
     journal = {Commentationes Mathematicae},
     pages = { 245--254},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2006},
     doi = {10.14708/cm.v46i2.5220},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5220/}
}
TY  - JOUR
AU  - Jan Milewski
TI  - Holomorphons and the standard almost complex structure on \(S^6\)
JO  - Commentationes Mathematicae
PY  - 2006
SP  -  245
EP  - 254
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5220/
DO  - 10.14708/cm.v46i2.5220
LA  - pl
ID  - 10_14708_cm_v46i2_5220
ER  - 
%0 Journal Article
%A Jan Milewski
%T Holomorphons and the standard almost complex structure on \(S^6\)
%J Commentationes Mathematicae
%D 2006
%P  245-254
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5220/
%R 10.14708/cm.v46i2.5220
%G pl
%F 10_14708_cm_v46i2_5220
Jan Milewski. Holomorphons and the standard almost complex structure on \(S^6\). Commentationes Mathematicae, Tome 46 (2006) no. 2, pp.  245-254. doi : 10.14708/cm.v46i2.5220. http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5220/

Cité par Sources :