Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal
Commentationes Mathematicae, Tome 46 (2006) no. 2, pp. 233-244
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
A Banach space \(X\) contains an isomorphic copy of \(C([0, 1])\), if it contains a binary tree \((e_n)\) with the following properties (1) \(e_n = e_{2n} + e_{2n+1}\) and (2) \(c \max_{2^n\leq k\tl 2^{n+1}} |a_k| \leq \|\sum_{k=2^n}^{2^{n+1}-1} a_k e_k \leq C\max_{2^n\leq k\lt 2^{n+1}} |a_k|\) for some constants \(0\lt c \leq C\) and every \(n\) and any scalars \(a_{2^n},\dots, a_{2^{n+1}-1}\). We present a proof of the following generalization of a Rosenthal result: if \(E\) is a closed subspace of a separable \(C(K)\) space with separable annihilator and\(S\colon E \to X\) is a continuous linear operator such that \(S^{∗}\) has nonseparable range, then there exists a subspace \(Y\) of \(E\) isomorphic to \(C([0, 1])\) such that \(S|_Y\) is an isomorphism, based on the fact.
@article{10_14708_cm_v46i2_5219,
author = {Artur Michalak},
title = {Notes on binary trees of elements in {\(C(K)\)} spaces with an application to a proof of a theorem of {H.} {P.} {Rosenthal}},
journal = {Commentationes Mathematicae},
pages = { 233--244},
year = {2006},
volume = {46},
number = {2},
doi = {10.14708/cm.v46i2.5219},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/}
}
TY - JOUR AU - Artur Michalak TI - Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal JO - Commentationes Mathematicae PY - 2006 SP - 233 EP - 244 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/ DO - 10.14708/cm.v46i2.5219 LA - pl ID - 10_14708_cm_v46i2_5219 ER -
%0 Journal Article %A Artur Michalak %T Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal %J Commentationes Mathematicae %D 2006 %P 233-244 %V 46 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/ %R 10.14708/cm.v46i2.5219 %G pl %F 10_14708_cm_v46i2_5219
Artur Michalak. Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal. Commentationes Mathematicae, Tome 46 (2006) no. 2, pp. 233-244. doi: 10.14708/cm.v46i2.5219
Cité par Sources :