Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal
Commentationes Mathematicae, Tome 46 (2006) no. 2, pp. 233-244 Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series

Voir la notice de l'article

A Banach space \(X\) contains an isomorphic copy of \(C([0, 1])\), if it contains a binary tree \((e_n)\) with the following properties (1) \(e_n = e_{2n} + e_{2n+1}\) and (2) \(c \max_{2^n\leq k\tl 2^{n+1}} |a_k| \leq \|\sum_{k=2^n}^{2^{n+1}-1} a_k e_k \leq C\max_{2^n\leq k\lt 2^{n+1}} |a_k|\) for some constants \(0\lt c \leq C\) and every \(n\) and any scalars \(a_{2^n},\dots, a_{2^{n+1}-1}\). We present a proof of the following generalization of a Rosenthal result: if \(E\) is a closed subspace of a separable \(C(K)\) space with separable annihilator and\(S\colon E \to X\) is a continuous linear operator such that \(S^{∗}\) has nonseparable range, then there exists a subspace \(Y\) of \(E\) isomorphic to \(C([0, 1])\) such that \(S|_Y\) is an isomorphism, based on the fact.
DOI : 10.14708/cm.v46i2.5219
Mots-clés : \(C(K)\)-spaces
@article{10_14708_cm_v46i2_5219,
     author = {Artur Michalak},
     title = {Notes on binary trees of elements in {\(C(K)\)} spaces with an application to a proof of a theorem of {H.} {P.} {Rosenthal}},
     journal = {Commentationes Mathematicae},
     pages = { 233--244},
     year = {2006},
     volume = {46},
     number = {2},
     doi = {10.14708/cm.v46i2.5219},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/}
}
TY  - JOUR
AU  - Artur Michalak
TI  - Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal
JO  - Commentationes Mathematicae
PY  - 2006
SP  -  233
EP  - 244
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/
DO  - 10.14708/cm.v46i2.5219
LA  - pl
ID  - 10_14708_cm_v46i2_5219
ER  - 
%0 Journal Article
%A Artur Michalak
%T Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal
%J Commentationes Mathematicae
%D 2006
%P  233-244
%V 46
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5219/
%R 10.14708/cm.v46i2.5219
%G pl
%F 10_14708_cm_v46i2_5219
Artur Michalak. Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal. Commentationes Mathematicae, Tome 46 (2006) no. 2, pp.  233-244. doi: 10.14708/cm.v46i2.5219

Cité par Sources :