Fixed point theory for multimaps defined on closed subsets of Fréchet spaces: the projective limit approach
Commentationes Mathematicae, Tome 46 (2006) no. 2, pp. 169-179.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

New fixed point results are presented for maps defined on closed subsets of a Fréchet space \(E\). The proof relies on fixed point results in Banach spaces and viewing \(E\) as the projective limit of a sequence of Banach spaces.
DOI : 10.14708/cm.v46i2.5215
Mots-clés : Fixed point theory, projective limits, Fréchet space, projective limit
@article{10_14708_cm_v46i2_5215,
     author = {Ravi P. Agarwal and Donal O{\textquoteright}Regan},
     title = {Fixed point theory for multimaps defined on closed subsets of {Fr\'echet} spaces: the projective limit approach},
     journal = {Commentationes Mathematicae},
     pages = { 169--179},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2006},
     doi = {10.14708/cm.v46i2.5215},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5215/}
}
TY  - JOUR
AU  - Ravi P. Agarwal
AU  - Donal O’Regan
TI  - Fixed point theory for multimaps defined on closed subsets of Fréchet spaces: the projective limit approach
JO  - Commentationes Mathematicae
PY  - 2006
SP  -  169
EP  - 179
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5215/
DO  - 10.14708/cm.v46i2.5215
LA  - pl
ID  - 10_14708_cm_v46i2_5215
ER  - 
%0 Journal Article
%A Ravi P. Agarwal
%A Donal O’Regan
%T Fixed point theory for multimaps defined on closed subsets of Fréchet spaces: the projective limit approach
%J Commentationes Mathematicae
%D 2006
%P  169-179
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5215/
%R 10.14708/cm.v46i2.5215
%G pl
%F 10_14708_cm_v46i2_5215
Ravi P. Agarwal; Donal O’Regan. Fixed point theory for multimaps defined on closed subsets of Fréchet spaces: the projective limit approach. Commentationes Mathematicae, Tome 46 (2006) no. 2, pp.  169-179. doi : 10.14708/cm.v46i2.5215. http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i2.5215/

Cité par Sources :