On extremal solutions of differential equations with advanced argument
Commentationes Mathematicae, Tome 46 (2006) no. 1, pp. 17-14.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

We obtain existence of absolutely continuous extremal solutions of the problem \(u'(x) = F(x, u(x), u(h(x)))\), \(u(0) = u_0\), and the Darboux problem for \(u_{xy}(x, y) = G(x, y, u(x, y), u(H(x, y)))\), where \(h\) and \(H\) are arbitrary continuous deviated arguments.
DOI : 10.14708/cm.v46i1.5205
Mots-clés : functional differential equations, advanced argument, extremal solutions, Darboux problem, Carathéodory condition
@article{10_14708_cm_v46i1_5205,
     author = {Antoni Augustynowicz and Jan Jankowski},
     title = {On extremal solutions of differential equations with advanced argument},
     journal = {Commentationes Mathematicae},
     pages = { 17--14},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2006},
     doi = {10.14708/cm.v46i1.5205},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i1.5205/}
}
TY  - JOUR
AU  - Antoni Augustynowicz
AU  - Jan Jankowski
TI  - On extremal solutions of differential equations with advanced argument
JO  - Commentationes Mathematicae
PY  - 2006
SP  -  17
EP  - 14
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i1.5205/
DO  - 10.14708/cm.v46i1.5205
LA  - pl
ID  - 10_14708_cm_v46i1_5205
ER  - 
%0 Journal Article
%A Antoni Augustynowicz
%A Jan Jankowski
%T On extremal solutions of differential equations with advanced argument
%J Commentationes Mathematicae
%D 2006
%P  17-14
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i1.5205/
%R 10.14708/cm.v46i1.5205
%G pl
%F 10_14708_cm_v46i1_5205
Antoni Augustynowicz; Jan Jankowski. On extremal solutions of differential equations with advanced argument. Commentationes Mathematicae, Tome 46 (2006) no. 1, pp.  17-14. doi : 10.14708/cm.v46i1.5205. http://geodesic.mathdoc.fr/articles/10.14708/cm.v46i1.5205/

Cité par Sources :