Boundaries of upper semicontinuous set valued maps
Commentationes Mathematicae, Tome 45 (2005) no. 2, pp. 225-235.

Voir la notice de l'article provenant de la source Annales Societatis Mathematicae Polonae Series

Let \(x_0\) be a q-point of a regular space \(X, Y\) a Hausdorff space whose relatively countably compact subsets are relatively compact and let \(F\colon X \to Y\) be an upper semicontinuous set valued map. Then the active boundary \(\operatorname{Frac} F (x_0)\) is the smallest compact kernel of \(F\) at \(x_0\).
DOI : 10.14708/cm.v45i2.5202
Mots-clés : Upper semicontinuous set valued map, active boundary, Choquet kernel, Vaı̆ns̆teı̆n-Choquet-Dolecki Theorem, compact filter base
@article{10_14708_cm_v45i2_5202,
     author = {Iwo Labuda},
     title = {Boundaries of upper semicontinuous set valued maps},
     journal = {Commentationes Mathematicae},
     pages = { 225--235},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2005},
     doi = {10.14708/cm.v45i2.5202},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5202/}
}
TY  - JOUR
AU  - Iwo Labuda
TI  - Boundaries of upper semicontinuous set valued maps
JO  - Commentationes Mathematicae
PY  - 2005
SP  -  225
EP  - 235
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5202/
DO  - 10.14708/cm.v45i2.5202
LA  - pl
ID  - 10_14708_cm_v45i2_5202
ER  - 
%0 Journal Article
%A Iwo Labuda
%T Boundaries of upper semicontinuous set valued maps
%J Commentationes Mathematicae
%D 2005
%P  225-235
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5202/
%R 10.14708/cm.v45i2.5202
%G pl
%F 10_14708_cm_v45i2_5202
Iwo Labuda. Boundaries of upper semicontinuous set valued maps. Commentationes Mathematicae, Tome 45 (2005) no. 2, pp.  225-235. doi : 10.14708/cm.v45i2.5202. http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5202/

Cité par Sources :