The Generalized Saddle-Node Bifurcation of Degenerate Solution
Commentationes Mathematicae, Tome 45 (2005) no. 2, pp. 145-150
Cet article a éte moissonné depuis la source Annales Societatis Mathematicae Polonae Series
In this paper we discuss the bifurcation problem for the abstract operator equation of the form \(F (u, \lambda) = \theta\) with a parameter \(\lambda\), where \(F\colon X \times R \to Y\) is a \(C^1\) mapping, \(X, Y\) are Banach spaces. By the bounded linear generalized inverse \(A^+\) of \(A = F_u (u_0 , \lambda_0 )\), an abstract bifurcation theorem for the case \(\operatorname{dim}N (F_u (u_0 , \lambda_0 )) \geq \operatorname{codim} R(F_u (u_0 , \lambda_0 )) = 1\) has been obtained.
Mots-clés :
Operator equation, bifurcation, generalized inverse of operator
@article{10_14708_cm_v45i2_5195,
author = {Ping Liu and Yu-Wen Wang},
title = {The {Generalized} {Saddle-Node} {Bifurcation} of {Degenerate} {Solution}},
journal = {Commentationes Mathematicae},
pages = { 145--150},
year = {2005},
volume = {45},
number = {2},
doi = {10.14708/cm.v45i2.5195},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5195/}
}
TY - JOUR AU - Ping Liu AU - Yu-Wen Wang TI - The Generalized Saddle-Node Bifurcation of Degenerate Solution JO - Commentationes Mathematicae PY - 2005 SP - 145 EP - 150 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14708/cm.v45i2.5195/ DO - 10.14708/cm.v45i2.5195 LA - pl ID - 10_14708_cm_v45i2_5195 ER -
Ping Liu; Yu-Wen Wang. The Generalized Saddle-Node Bifurcation of Degenerate Solution. Commentationes Mathematicae, Tome 45 (2005) no. 2, pp. 145-150. doi: 10.14708/cm.v45i2.5195
Cité par Sources :