Voir la notice de l'article provenant de la source Numdam
We consider an elliptic Kolmogorov equation in a convex subset of a separable Hilbert space . The Kolmogorov operator is a realization of , is a self-adjoint operator in and is a convex function. We prove that for and the weak solution belongs to the Sobolev space , where is the log-concave measure associated to the system. Moreover we prove maximal estimates on the gradient of , that allow to show that satisfies the Neumann boundary condition in the sense of traces at the boundary of . The general results are applied to Kolmogorov equations of reaction–diffusion and Cahn–Hilliard stochastic PDEÕs in convex sets of suitable Hilbert spaces.
Nous considérons une équation de Kolmogorov elliptique dans un sous-ensemble convexe d’un espace de Hilbert séparable . L’opérateur de Kolmogorov est une réalisation de , où est un opérateur auto-adjoint dans et est une fonction convexe. Nous prouvons que pour et la solution faible appartient à l’espace de Sobolev , où est la mesure log-concave associée au système. Nous prouvons aussi des estimations maximales sur le gradient de qui permettent de montrer que satisfait des conditions au bord de Neumann au sens des traces à la frontière de . Les résultats généraux sont appliqués aux équations de réaction–diffusion de Kolmogorov et à l’équation de Cahn–Hilliard stochastique dans des ensembles convexes d’espaces de Hilbert appropriés.
@article{AIHPB_2015__51_3_1102_0, author = {Da Prato, Giuseppe and Lunardi, Alessandra}, title = {Maximal {Sobolev} regularity in {Neumann} problems for gradient systems in infinite dimensional domains}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1102--1123}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP611}, mrnumber = {3365974}, zbl = {1330.35514}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/14-AIHP611/} }
TY - JOUR AU - Da Prato, Giuseppe AU - Lunardi, Alessandra TI - Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1102 EP - 1123 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/14-AIHP611/ DO - 10.1214/14-AIHP611 LA - en ID - AIHPB_2015__51_3_1102_0 ER -
%0 Journal Article %A Da Prato, Giuseppe %A Lunardi, Alessandra %T Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1102-1123 %V 51 %N 3 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/14-AIHP611/ %R 10.1214/14-AIHP611 %G en %F AIHPB_2015__51_3_1102_0
Da Prato, Giuseppe; Lunardi, Alessandra. Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1102-1123. doi : 10.1214/14-AIHP611. http://geodesic.mathdoc.fr/articles/10.1214/14-AIHP611/
[1] Intégration géométrique sur l’espace de Wiener. Bull. Sci. Math. 112 (1988) 3–52. | Zbl | MR
and .[2] Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 (2009) 517–564. | Zbl | MR | DOI
, and .[3] The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. Partial Differential Equations 33 (2008) 1318–1338. | Zbl | MR | DOI
and .[4] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37 (2009) 1427–1458. | Zbl | MR | DOI
, and .[5] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 699–724. | Zbl | MR | mathdoc-id | DOI
, and .[6] Gaussian Measures. Amer. Math. Soc., Providence, 1998. | Zbl | MR | DOI
.[7] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973. | Zbl | MR
.[8] Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal. 266 (2014) 1948–1987. | Zbl | MR | DOI
and .[9] Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500–532. | Zbl | MR | DOI
.[10] An Introduction to Infinite Dimensional Analysis. Springer, Berlin, 2006. | Zbl | MR | DOI
.[11] Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation. Ann. Inst. Henri Poincaré Probab. Statist. 40 (2004) 73–88. | Zbl | MR | mathdoc-id | EuDML | DOI
, and .[12] Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differential Equations 198 (2004) 35–52. | Zbl | MR | DOI
and .[13] Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension. Ann. Probab. 42 (2014) 2113–2160. | MR | Zbl | DOI
and .[14] Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Notes 293. Cambridge Univ. Press, Cambridge, 2002. | Zbl | MR | DOI
and .[15] Conservative stochastic Cahn–Hilliard equation with reflection. Ann. Probab. 35 (2007) 1706–1739. | Zbl | MR | DOI
and .[16] Vector Measures. Mathematical Surveys 15. Amer. Math. Soc., Providence, RI, 1977. | Zbl | MR | DOI
and .[17] Hausdorff measures on the Wiener space. Potential Anal. 1 (1992) 177–189. | Zbl | MR | DOI
and .[18] Fluctuations for interface model on a wall. Stochastic Process. Appl. 94 (2001) 1–27. | Zbl | MR | DOI
and .[19] White noise driven by quasilinear SPDE’s with reflection. Probab. Theory Related Fields 93 (1992) 77–89. | Zbl | MR | DOI
and .[20] The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple. Ann. Probab. 40 (2012) 1759–1794. | Zbl | MR | DOI
, and .[21] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 (2002) 579–600. | Zbl | MR | DOI
.Cité par Sources :