Voir la notice de l'article provenant de la source Numdam
We consider some random band matrices with band-width whose entries are independent random variables with distribution tail in . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when , the largest eigenvalues have order , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) when and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) when ). On the other hand, when , the largest eigenvalues have order and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their coordinates.
On considère des matrices aléatoires à structure bande dont la bande a pour largeur et dont les coefficients sont indépendants à queue de distribution en . On s’intéresse aux plus grandes valeurs propres et aux vecteurs propres associés et prouve la transition de phase suivante. D’une part, quand , les plus grandes valeurs propres ont pour ordre , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement portés par deux coordonnées (ce phénomène a déjà été remarqué pour des matrices pleines par Soshnikov dans (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) quand , et par Auffinger et al. dans (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) quand ). D’autre part, quand , les plus grandes valeurs propres ont pour ordre et la plupart des vecteurs propres de la matrice sont délocalisés, i.e. approximativement uniformément distribués sur leurs coordonnées.
@article{AIHPB_2014__50_4_1385_0, author = {Benaych-Georges, Florent and P\'ech\'e, Sandrine}, title = {Localization and delocalization for heavy tailed band matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1385--1403}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP562}, mrnumber = {3269999}, zbl = {06377559}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP562/} }
TY - JOUR AU - Benaych-Georges, Florent AU - Péché, Sandrine TI - Localization and delocalization for heavy tailed band matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1385 EP - 1403 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP562/ DO - 10.1214/13-AIHP562 LA - en ID - AIHPB_2014__50_4_1385_0 ER -
%0 Journal Article %A Benaych-Georges, Florent %A Péché, Sandrine %T Localization and delocalization for heavy tailed band matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1385-1403 %V 50 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP562/ %R 10.1214/13-AIHP562 %G en %F AIHPB_2014__50_4_1385_0
Benaych-Georges, Florent; Péché, Sandrine. Localization and delocalization for heavy tailed band matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1385-1403. doi : 10.1214/13-AIHP562. http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP562/
[1] Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589-610. | Zbl | MR | mathdoc-id
, and .[2] Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. | Zbl | MR
and .[3] Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. | Zbl | MR
.[4] Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. | Zbl | MR
.[5] The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715-751. | Zbl | MR
and .[6] Regular Variation. Cambridge Univ. Press, Cambridge, 1989. | Zbl | MR
, and .[7] Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. | Zbl | MR
and .[8] Theory of Lévy matrices. Phys. Rev. E 50 (1994) 1810-1822.
and .[9] Combinatorial Methods in Density Estimation. Springer, New York, 2001. | Zbl | MR
and .[10] Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. | Zbl | MR
.[11] Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509-554. | Zbl | MR
and .[12] Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227-1319. | Zbl | MR
and .[13] Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323 (2013) 367-416. | Zbl | MR
, , and .[14] Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), 641-655. | Zbl | MR
, and .[15] Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009) 815-852. | Zbl | MR
, and .[16] Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 2010 (2010) 436-479. | Zbl | MR
, and .[17] An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. | Zbl | MR
.[18] Scaling properties of localization in random band matrices: A -model approach. Phys. Rev. Lett. 67 (18) (1991) 2405-2409. | Zbl | MR
and .[19] Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155 (2013) 543-582. | Zbl | MR
and .[20] The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. | MR
and .[21] Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. | Zbl | MR
, and .[22] Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5-6) (2007) 857-884. | Zbl | MR
and .[23] Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. | Zbl | MR
.[24] Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065-1097. | Zbl | MR
.[25] A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56-79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114-131. | Zbl | MR
and .[26] The spectral edge of some random band matrices. Ann. Math. 172 (2010) 2223-2251. | Zbl | MR
.[27] Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1-24. | Zbl | MR
and .[28] Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697-733. | Zbl | MR
.[29] Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82-91. | Zbl | MR | EuDML
.[30] Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351-364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. | Zbl | MR
.[31] Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471-488. Oxford Univ. Press, Oxford, 2011. | Zbl | MR
.[32] Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. | Zbl | MR
and .[33] Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549-572. | Zbl | MR
and .Cité par Sources :