Voir la notice de l'article provenant de la source Numdam
We show that the only flow solving the stochastic differential equation (SDE) on
Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur
@article{AIHPB_2014__50_4_1323_0, author = {Le Jan, Yves and Raimond, Olivier}, title = {Three examples of brownian flows on $\mathbb {R}$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1323--1346}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP541}, mrnumber = {3269996}, zbl = {06377556}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/} }
TY - JOUR AU - Le Jan, Yves AU - Raimond, Olivier TI - Three examples of brownian flows on $\mathbb {R}$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1323 EP - 1346 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/ DO - 10.1214/13-AIHP541 LA - en ID - AIHPB_2014__50_4_1323_0 ER -
%0 Journal Article %A Le Jan, Yves %A Raimond, Olivier %T Three examples of brownian flows on $\mathbb {R}$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1323-1346 %V 50 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/ %R 10.1214/13-AIHP541 %G en %F AIHPB_2014__50_4_1323_0
Le Jan, Yves; Raimond, Olivier. Three examples of brownian flows on $\mathbb {R}$. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1323-1346. doi : 10.1214/13-AIHP541. http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/
[1] Brownian motion on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
.[2] On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations with jumps. Preprint, 2011. Available at arXiv:1108.4016.
, and .[3] The Skorokhod problem in a time-dependent interval. Stochastic Process. Appl. 119 (2009) 428-452. | Zbl | MR
, and .[4] Lenses in skew Brownian flow. Ann. Probab. 32 (2004) 3085-3115. | Zbl | MR
and .[5] The Brownian web. Proc. Natl. Acad. Sci. USA 99 (2002) 15888-15893 (electronic). | Zbl | MR
, , and .[6] The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857-2883. | Zbl | MR
, , and .[7] Discrete approximations to solution flows of Tanaka's SDE related to Walsh Brownian motion. In Séminaire de Probabilités XLIV 167-190. Lecture Notes in Math. 2046. Springer, Heidelberg, 2012. | Zbl | MR
.[8] Stochastic flows related to Walsh Brownian motion. Electron. J. Probab. 16 (2011) 1563-1599 (electronic). | Zbl | MR
.[9] A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab. 38 (2010) 1062-1105. | Zbl | MR
and .[10] Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springerg, New York, 1991. | Zbl | MR
and .[11] Integration of Brownian vector fields. Ann. Probab. 30 (2002) 826-873. | Zbl | MR
and .[12] Flows, coalescence and noise. Ann. Probab. 32 (2004) 1247-1315. | Zbl | MR
and .[13] Stochastic flows on the circle. In Probability and Partial Differential Equations in Modern Applied Mathematics 151-162. IMA Vol. Math. Appl. 140. Springer, New York, 2005. | Zbl | MR
and .[14] Flows associated to Tanaka's SDE. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 21-34. | Zbl | MR
and .[15] Flots stochastiques d'opérateurs dirigés par des bruits gaussiens et poissonniens. Ph.D. dissertation, Univ. Paris-Sud, 2007.
.[16] Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250-1310. | Zbl | MR
and .[17] Global -solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137-176. | Zbl | MR
and .[18] The solution of the perturbed Tanaka equation is pathwise unique. Preprint, 2011. Available at arXiv:1104.0740. | Zbl | MR
.[19] Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934-992 (electronic). | Zbl | MR
.[20] Nonclassical stochastic flows and continuous products. Probab. Surv. 1 (2004) 173-298 (electronic). | Zbl | MR
.[21] Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985) 405-443. | Zbl | MR
and .[22] Reflected Brownian motion in a wedge: Semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985) 161-176. | Zbl | MR
.Cité par Sources :