Three examples of brownian flows on
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1323-1346

Voir la notice de l'article provenant de la source Numdam

We show that the only flow solving the stochastic differential equation (SDE) on

dX t =1 {X t >0} W + (dt)+1 {X t <0} dW - (dt),
where W + and W - are two independent white noises, is a coalescing flow we will denote by ϕ ± . The flow ϕ ± is a Wiener solution of the SDE. Moreover, K + =𝖤[δ ϕ ± |W + ] is the unique solution (it is also a Wiener solution) of the SDE
K s,t + f(x)=f(x)+ s t K s,u (1 + f ' )(x)W + (du)+1 2 s t K s,u f``(x)du
for s<t, x and f a twice continuously differentiable function. A third flow ϕ + can be constructed out of the n-point motions of K + . This flow is coalescing and its n-point motion is given by the n-point motions of K + up to the first coalescing time, with the condition that when two points meet, they stay together. We note finally that K + =𝖤[δ ϕ + |W + ].

Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur

dX t =1 {X t >0} W + (dt)+1 {X t <0} dW - (dt),
W + et W - sont deux bruits blancs indépendants, est un flot coalescent que nous noterons ϕ ± . Le flot ϕ ± est une solution Wiener de l’équation. De plus, K + =𝖤[δ ϕ ± |W + ] est l’unique solution (c’est aussi une solution Wiener) de l’EDS
K s,t + f(x)=f(x)+ s t K s,u (1 + f ' )(x)W + (du)+1 2 s t K s,u f``(x)du
pour tout s<t, x et f une fonction deux fois continûment mesurable. Un troisième flot ϕ + peut être construit à partir des mouvements à n points de K + . Ce flot est coalescent et ses mouvements à n points sont donnés par les mouvements à n points de K + jusqu’au premier temps de coalescence, avec comme condition que lorsque deux points se rencontrent, ils restent confondus. On remarquera finalement que K + =𝖤[δ ϕ + |W + ].

DOI : 10.1214/13-AIHP541
Classification : 60H25, 60J60
Keywords: stochastic flows, coalescing flow, Arratia flow or brownian web, brownian motion with oblique reflection on a wedge
@article{AIHPB_2014__50_4_1323_0,
     author = {Le Jan, Yves and Raimond, Olivier},
     title = {Three examples of brownian flows on $\mathbb {R}$},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1323--1346},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {4},
     year = {2014},
     doi = {10.1214/13-AIHP541},
     mrnumber = {3269996},
     zbl = {06377556},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/}
}
TY  - JOUR
AU  - Le Jan, Yves
AU  - Raimond, Olivier
TI  - Three examples of brownian flows on $\mathbb {R}$
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 1323
EP  - 1346
VL  - 50
IS  - 4
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/
DO  - 10.1214/13-AIHP541
LA  - en
ID  - AIHPB_2014__50_4_1323_0
ER  - 
%0 Journal Article
%A Le Jan, Yves
%A Raimond, Olivier
%T Three examples of brownian flows on $\mathbb {R}$
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 1323-1346
%V 50
%N 4
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP541/
%R 10.1214/13-AIHP541
%G en
%F AIHPB_2014__50_4_1323_0
Le Jan, Yves; Raimond, Olivier. Three examples of brownian flows on $\mathbb {R}$. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1323-1346. doi: 10.1214/13-AIHP541

Cité par Sources :