Voir la notice de l'article provenant de la source Numdam
In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory between two points on the boundary of a finite subdomain of is proportional to . When is supercritical (i.e. where is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.
Dans cet article, nous considérons le modèle suivant de marches auto-évitantes : la probabilité d’une trajectoire auto-évitante entre deux points fixés d’un sous-domaine fini de est proportionnelle à . Lorsque le paramètre est supercritique (i.e. ou est la constante de connectivité du réseau), nous prouvons que la trajectoire aléatoire remplit l’espace lorsque l’on considère la limite d’échelle du modèle.
@article{AIHPB_2014__50_2_315_0, author = {Duminil-Copin, Hugo and Kozma, Gady and Yadin, Ariel}, title = {Supercritical self-avoiding walks are space-filling}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {315--326}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP528}, mrnumber = {3189073}, zbl = {1292.60096}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP528/} }
TY - JOUR AU - Duminil-Copin, Hugo AU - Kozma, Gady AU - Yadin, Ariel TI - Supercritical self-avoiding walks are space-filling JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 315 EP - 326 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP528/ DO - 10.1214/12-AIHP528 LA - en ID - AIHPB_2014__50_2_315_0 ER -
%0 Journal Article %A Duminil-Copin, Hugo %A Kozma, Gady %A Yadin, Ariel %T Supercritical self-avoiding walks are space-filling %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 315-326 %V 50 %N 2 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP528/ %R 10.1214/12-AIHP528 %G en %F AIHPB_2014__50_2_315_0
Duminil-Copin, Hugo; Kozma, Gady; Yadin, Ariel. Supercritical self-avoiding walks are space-filling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 315-326. doi : 10.1214/12-AIHP528. http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP528/
[1] Lectures on self-avoiding-walks. In Probability and Statistical Physics in Two and More Dimensions 395-467. D. Ellwood, C. Newman, V. Sidoravicius and W. Werner (Eds). Clay Math. Proc. 15. Amer. Math. Soc., Providence, RI, 2012. Available at arXiv:1109.1549. | MR
, , and .[2] The strong interaction limit of continuous-time weakly self-avoiding walk. Preprint. Available at arXiv:1104.3731. | Zbl
, and .[3] Functional integral representations for self-avoiding walk. Probab. Surv. 6 (2009) 34-61. Available at i-journals.org. | Zbl | MR
, and .[4] Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In Proceedings of the International Congress of Mathematicians 2232-2257. Hindustian Book Agency, New Delhi. Available at arXiv:1003.4484. | Zbl | MR
and .[5] Self-avoiding walk in or more dimensions. Comm. Math. Phys. 97(1-2) (1985) 125-148. Available at projecteuclid.org. | Zbl | MR
and .[6] Self-avoiding walk is sub-ballistic. Preprint. Available at arXiv:1205.0401. | Zbl | MR
and .[7] The connective constant of the honeycomb lattice equals . Ann. of Math. (2) 175(3) (2012) 1653-1665. | Zbl | MR
and .[8] Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.
.[9] Percolation. Springer, Berlin, 1999. | Zbl | MR
.[10] Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford Ser. (2) 13 (1962) 108-110. Available at oxfordjournals.org. | Zbl | MR
and .[11] Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.) 25(2) (1991) 417-423. Available at ams.org. | Zbl | MR
and .[12] Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147(1) (1992) 101-136. Available at projecteuclid.org. | Zbl | MR
and .[13] The normal number of prime factors of a number . Quart. J. Pure Appl. Math. 48 (1917) 76-92. | JFM
and .[14] Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on . Markov Process. Related Fields 4(3) (1998) 323-350. | Zbl | MR
.[15] On the scaling limit of planar self-avoiding walk. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 339-364. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. Available at arXiv:math/0204277. | Zbl | MR
, and .[16] The Self-Avoiding Walk. Probability and Its Applications. Birkhäuser, Boston, MA, 1993. | Zbl | MR
and .[17] Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians, Vol. II 1421-1451. Eur. Math. Soc., Zürich, 2006. Available at arXiv:0708.0032. | Zbl | MR
.Cité par Sources :