Voir la notice de l'article provenant de la source Numdam
By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt's Gaussian correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived as a corollary, and it is in fact extended to a wide class of radially symmetric measures.
En utilisant des arguments géométriques élémentaires, on démontre des inégalités de corrélation pour des mesures de probabilité à symétrie radiale. Plus précisément on montre que, parmi la famille des ensembles width-decreasing, le ratio de corrélation est minimisé par des bandes. Comme les ouverts convexes symétriques appartiennent à cette famille, on retrouve comme corollaire le résultat de Pitt sur la validité de la conjecture de corrélation gaussiennne en dimension 2, qui est étendue dans ce papier à une large classe de mesures à symétrie radiale.
@article{AIHPB_2014__50_1_1_0, author = {Figalli, A. and Maggi, F. and Pratelli, A.}, title = {A geometric approach to correlation inequalities in the plane}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1--14}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP494}, mrnumber = {3161519}, zbl = {1288.60024}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP494/} }
TY - JOUR AU - Figalli, A. AU - Maggi, F. AU - Pratelli, A. TI - A geometric approach to correlation inequalities in the plane JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1 EP - 14 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP494/ DO - 10.1214/12-AIHP494 LA - en ID - AIHPB_2014__50_1_1_0 ER -
%0 Journal Article %A Figalli, A. %A Maggi, F. %A Pratelli, A. %T A geometric approach to correlation inequalities in the plane %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1-14 %V 50 %N 1 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP494/ %R 10.1214/12-AIHP494 %G en %F AIHPB_2014__50_1_1_0
Figalli, A.; Maggi, F.; Pratelli, A. A geometric approach to correlation inequalities in the plane. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 1-14. doi : 10.1214/12-AIHP494. http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP494/
[1] Transportation techniques and Gaussian inequalities. In Optimal Transportation, Geometry, and Functional Inequalities. L. Ambrosio (Ed.) Edizioni della Scuola Normale Superiore di Pisa, 2010. | Zbl | MR
.[2] A Gaussian correlation inequality for certain bodies in . Math. Ann. 256 (4) (1981) 569-573. | Zbl | MR
.[3] A particular case of correlation inequality for the Gaussian measure. Ann. Probab. 27 (4) (1999) 1939-1951. | Zbl | MR
.[4] On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38 (1967) 1853-1867. | Zbl | MR
.[5] Geometrical properties of the diffusion semigroups and convex inequalities. Preprint 2006. Available at http://www.math.uni-bielefeld.de/~bibos/preprints/06-03-208.pdf.
.[6] A Gaussian correlation inequality for symmetric convex sets. Ann. Probab. 5 (3) (1977) 470-474. | Zbl | MR
.[7] On the Gaussian measure of the intersection. Ann. Probab. 26 (1) (1998) 346-357. | Zbl | MR
, and .[8] Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 (1967) 626-633. | Zbl | MR
.Cité par Sources :