Voir la notice de l'article provenant de la source Numdam
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, , where is a positive constant. The measures considered are associated with the generalized Maxwell-Boltzmann models in statistical mechanics, reversible coagulation-fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition chosen randomly according to the above measure, from its limit shape. We demonstrate that when the component size passes beyond the threshold value, the independence of numbers of components transforms into their conditional independence (given their masses). Among other things, the paper also discusses, in a general setting, the interplay between limit shape, threshold and gelation.
Nous trouvons des formes limites pour une famille de mesures multiplicatives sur l’ensemble des partitions, induites par des fonctions génératrices exponentielles avec des paramètres d’expansion , où est une constante positive. Les mesures considérées sont associées aux modèles Maxwell-Boltzmann généralisés de la mécanique statistique, des processus de coagulation-fragmentation réversibles et des structures combinatoires connues sous le nom d’assemblées. Nous prouvons un théorème de limite centrale pour les fluctuations d’une partition qui est mise à l'échelle convenablement et choisie aléatoirement selon la mesure ci-dessus. Nous démontrons que, quand la taille des composantes dépasse la valeur seuil, l’indépendance des nombres de composants se transforme en leur indépendance conditionnelle. Entre autres, cet article traite, dans un cadre général, des relations entre la forme limite, le seuil et la congélation.
@article{AIHPB_2008__44_5_915_0, author = {Erlihson, Michael M. and Granovsky, Boris L.}, title = {Limit shapes of {Gibbs} distributions on the set of integer partitions : the expansive case}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {915--945}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP129}, mrnumber = {2453776}, zbl = {1181.60146}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/07-AIHP129/} }
TY - JOUR AU - Erlihson, Michael M. AU - Granovsky, Boris L. TI - Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 915 EP - 945 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/07-AIHP129/ DO - 10.1214/07-AIHP129 LA - en ID - AIHPB_2008__44_5_915_0 ER -
%0 Journal Article %A Erlihson, Michael M. %A Granovsky, Boris L. %T Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 915-945 %V 44 %N 5 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/07-AIHP129/ %R 10.1214/07-AIHP129 %G en %F AIHPB_2008__44_5_915_0
Erlihson, Michael M.; Granovsky, Boris L. Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 915-945. doi : 10.1214/07-AIHP129. http://geodesic.mathdoc.fr/articles/10.1214/07-AIHP129/
[1] The Theory of Partitions, Vol. 2. Addison-Wesley, 1976. | Zbl | MR
.[2] Independent process appoximation for random combinatorial structures. Adv. Math. 104 (1994) 90-154. | Zbl | MR
and .[3] Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society Publishing House, Zurich, 2004. | Zbl | MR
, and .[4] Random combinatorial structures: The convergent case. J. Combin. Theory Ser. A 109 (2005) 203-220. | Zbl | MR
and .[5] Number Theoretic Density and Logical Limit Laws. Amer. Math. Soc., Providence, RI, 2001. | Zbl | MR
.[6] Sufficient conditions for zero-one laws. Trans. Amer. Math. Soc. 354 (2002) 613-630. | Zbl | MR
.[7] Asymptotics for logical limit laws: When the growth of the components is in RT class. Trans. Amer. Math. Soc. 355 (2003) 3777-3794. | Zbl | MR
and .[8] Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys. 127 (2007) 381-418. | Zbl | MR
and .[9] Central limit theorem for random partitions under the Plancherel measure, preprint. Available at math.PR/0607635, 2006. | Zbl
and .[10] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1995. | Zbl | MR
.[11] The equilibrium behaviour of reversible coagulation-fragmentation processes. J. Theoret. Probab. 12 (1999) 447-474. | Zbl | MR
, and .[12] Reversible coagulation-fragmentation processes and random combinatorial structures: Asymptotics for the number of groups. Random Structures Algorithms 25 (2004) 227-245. | Zbl | MR
and .[13] Asymptotic formula for a partition function of reversible coagulation-fragmentation processes. J. Israel Math. 130 (2002) 259-279. | Zbl | MR
and .[14] Clustering in coagulation-fragmentation processes, random combinatorial structures and additive number systems: Asymptotic formulae and limiting laws. Trans. Amer. Math. Soc. 357 (2005) 2483-2507. | Zbl | MR
and .[15] Partitions into distinct large parts. J. Aust. Math. Soc. (Ser. A) 57 (1994) 386-416. | Zbl | MR
and .[16] The structure of random partitions of large integers. Tran. Amer. Math. Soc. 337 (1993) 703-735. | Zbl | MR
.[17] Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 (2006) 5674-5685. | MR | Zbl
and .[18] Asymptotics of counts of small components in random structures and models of coagulation-fragmentation. Available at math.Pr/0511381, 2006. | Zbl
.[19] Asymptotic enumeration and logical limit laws for expansive multisets. J. London Math. Soc. (2) 73 (2006) 252-272. | Zbl | MR
and .[20] The noisy voter model. Stochastic Process. Appl. 55 (1995) 23-43. | Zbl | MR
and .[21] Additive and Cancellative Interacting Particle Systems. Springer, New York, 1979. | Zbl | MR
.[22] Exact solutions for random coagulation processes. Z. Phys. B - Cond. Matter. 58 (1985) 219-227.
, , and .[23] Foundations of Modern Probability. Springer, New York, 2001. | Zbl | MR
.[24] On some conditions for absence of a giant component in the generalized allocation scheme. Discrete Math. Appl. 12 (2002) 291-302. | Zbl | MR
.[25] Reversibility and Stochastic Networks. Wiley, New York, 1979. | Zbl | MR
.[26] Coherent random allocations, and the Ewens-Pitman formula, J. Math. Sci. 138 (2006) 5699-5710. | Zbl | MR
.[27] Mathematical Foundations of Quantum Statistics. Graylock Press, Albany, NY, 1960. | Zbl | MR
.[28] Random Graphs. Cambridge Univ. Press, 1999. | Zbl | MR
.[29] A variational problem for random Young tableaux. Adv. Math. 26 (1977) 206-222. | Zbl | MR
and .[30] Local limit theorems for sums of power series distributed random variables and for the number of components in labelled relational structures. Random Structures Algorithms 3 (1992) 404-426. | Zbl | MR
.[31] Probabilistic transforms for combinatorial urn models. Combin. Probab. Comput. 13 (2004) 645-675. | Zbl | MR
and .[32] Symmetric functions and random partitions. Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Acad. Publ., Dordrecht, 2002. | Zbl | MR
.[33] Combinatorial Stochastic Processes. Springer, Berlin, 2006. | Zbl | MR
.[34] On a likely shape of the random Ferrers diagram. Adv. in Appl. Math. 18 (1997) 432-488. | Zbl | MR
.[35] On the distribution of the number of Young tableaux for a uniformly random diagram. Adv. in Appl. Math. 29 (2002) 184-214. | Zbl | MR
.[36] Identities arising from limit shapes of costrained randiom partitions, preprint, 2003.
.[37] Probability. Springer, New York, 1984. | Zbl | MR
.[38] Geometric variational problems of statistical mechanics and of combinatorics, probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000) 1364-1370. | Zbl | MR
.[39] Wulf construction in statistical mechanics and combinatorics. Russian Math. Surveys. 56 (2001) 709-738. | Zbl | MR
.[40] Logical limit laws for logarithmic structures. Math. Proc. Cambridge Philos. Soc. 140 (2005) 537-544. | Zbl | MR
.[41] Statistical mechanics and the partition of numbers. The form of the crystal surfaces. Proc. Cambridge Philos. Soc. 48 (1952) 683-697. | Zbl | MR
.[42] Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Dokl. Akad. Nauk SSSR 233 (1977) 1024-1027. | Zbl | MR
and .[43] Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers. Russian Math. Surveys 52 (1997) 139-146. | Zbl | MR
.[44] Statistical mechanics of combinatorial partitions and their limit configurations. Funct. Anal. Appl. 30 (1996) 90-105. | Zbl | MR
.[45] A local limit theorem for random partitions of natural numbers. Theory Probab. Appl. 44 (2000) 453-468. | Zbl | MR
, and .[46] The limit shape and fluctuations of random partitions of naturals with fixed number of summands. Mosc. Math. J. 1 (2001) 457-468. | Zbl | MR
and .[47] Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions. Comm. Math. Phys. 261 (2006) 759-769. | Zbl | MR
and .[48] Asymptotics of the uniform measure on the simplex, random compositions and partitions. Funct. Anal. Appl. 37 (2003) 39-48. | Zbl | MR
and .[49] Systems in Stochastic Equilibrium. Wiley, New York, 1986. | Zbl | MR
.[50] Asymptotics of random partitions of a set. J. Math. Sci. 87 (1997) 4124-4137. | Zbl | MR
.Cité par Sources :