The multiplicative property characterizes p and Lp norms
Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 637-647

Voir la notice de l'article provenant de la source Numdam

We show that ℓp norms are characterized as the unique norms which are both invariant under coordinate permutation and multiplicative with respect to tensor products. Similarly, the Lp norms are the unique rearrangement-invariant norms on a probability space such that ‖XY‖ = ‖X‖ ⋅ ‖Y‖ for every pair X, Y of independent random variables. Our proof combines the tensor power trick and Cramér's large deviation theorem.

Publié le :
DOI : 10.1142/S1793744211000485

Aubrun, Guillaume 1 ; Nechita, Ion 1

1
@article{CML_2011__3_4_637_0,
     author = {Aubrun, Guillaume and Nechita, Ion},
     title = {The multiplicative property characterizes $\ell _p$ and $L_p$ norms},
     journal = {Confluentes Mathematici},
     pages = {637--647},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {4},
     year = {2011},
     doi = {10.1142/S1793744211000485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000485/}
}
TY  - JOUR
AU  - Aubrun, Guillaume
AU  - Nechita, Ion
TI  - The multiplicative property characterizes $\ell _p$ and $L_p$ norms
JO  - Confluentes Mathematici
PY  - 2011
SP  - 637
EP  - 647
VL  - 3
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000485/
DO  - 10.1142/S1793744211000485
LA  - en
ID  - CML_2011__3_4_637_0
ER  - 
%0 Journal Article
%A Aubrun, Guillaume
%A Nechita, Ion
%T The multiplicative property characterizes $\ell _p$ and $L_p$ norms
%J Confluentes Mathematici
%D 2011
%P 637-647
%V 3
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000485/
%R 10.1142/S1793744211000485
%G en
%F CML_2011__3_4_637_0
Aubrun, Guillaume; Nechita, Ion. The multiplicative property characterizes $\ell _p$ and $L_p$ norms. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 637-647. doi: 10.1142/S1793744211000485

Cité par Sources :