Voir la notice de l'article provenant de la source Numdam
The Residual Smoothing Scheme is a numerical method which consists in preconditioning at each time step the method of lines. In this paper, RSS is defined and analyzed in an abstract linear parabolic case, i.e. for an abstract ordinary differential equation of the form
,
with A a self-adjoint non negative operator, and it can be written
,
where B is a preconditioner of A.
We show that RSS is stable, convergent and of order one in energy norm. We also prove that its kth Richardson's extrapolation is stable and of order k.
Ribot, Magali 1 ; Schatzman, Michelle 1
@article{CML_2011__3_3_495_0, author = {Ribot, Magali and Schatzman, Michelle}, title = {Stability, convergence and order of the extrapolations of the residual smoothing scheme in energy norm}, journal = {Confluentes Mathematici}, pages = {495--521}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {3}, year = {2011}, doi = {10.1142/S1793744211000436}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000436/} }
TY - JOUR AU - Ribot, Magali AU - Schatzman, Michelle TI - Stability, convergence and order of the extrapolations of the residual smoothing scheme in energy norm JO - Confluentes Mathematici PY - 2011 SP - 495 EP - 521 VL - 3 IS - 3 PB - World Scientific Publishing Co Pte Ltd UR - http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000436/ DO - 10.1142/S1793744211000436 LA - en ID - CML_2011__3_3_495_0 ER -
%0 Journal Article %A Ribot, Magali %A Schatzman, Michelle %T Stability, convergence and order of the extrapolations of the residual smoothing scheme in energy norm %J Confluentes Mathematici %D 2011 %P 495-521 %V 3 %N 3 %I World Scientific Publishing Co Pte Ltd %U http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000436/ %R 10.1142/S1793744211000436 %G en %F CML_2011__3_3_495_0
Ribot, Magali; Schatzman, Michelle. Stability, convergence and order of the extrapolations of the residual smoothing scheme in energy norm. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 495-521. doi: 10.1142/S1793744211000436
Cité par Sources :