Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛)
Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 177-236

Voir la notice de l'article provenant de la source American Mathematical Society

The cohomology of the Lubin-Tate tower is known to realize the local Langlands correspondence for $GL(n)$ over a nonarchimedean local field. In this article we make progress toward a purely local proof of this fact. To wit, we find a family of formal schemes $\mathcal {V}$ such that the generic fiber of $\mathcal {V}$ is isomorphic to an open subset of Lubin-Tate space at infinite level, and such that the middle cohomology of the special fiber of $\mathcal {V}$ realizes the local Langlands correspondence for a broad class of supercuspidals (those whose Weil parameters are induced from an unramified degree $n$ extension). The special fiber of $\mathcal {V}$ is related to an interesting variety $X$, defined over a finite field, which is “maximal” in the sense that the number of rational points of $X$ is the largest possible among varieties with the same Betti numbers as $X$. The variety $X$ is derived from a certain unipotent algebraic group, in an analogous manner as Deligne-Lusztig varieties are derived from reductive algebraic groups.
DOI : 10.1090/jams826

Boyarchenko, Mitya 1 ; Weinstein, Jared 2

1 Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, Michigan 48109
2 Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, Massachusetts 02215
@article{10_1090_jams826,
     author = {Boyarchenko, Mitya and Weinstein, Jared},
     title = {Maximal varieties and the local {Langlands} correspondence for {\dh}{\textordmasculine}{\dh}{\textquestiondown}({\dh}‘›)},
     journal = {Journal of the American Mathematical Society},
     pages = {177--236},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2016},
     doi = {10.1090/jams826},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams826/}
}
TY  - JOUR
AU  - Boyarchenko, Mitya
AU  - Weinstein, Jared
TI  - Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛)
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 177
EP  - 236
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams826/
DO  - 10.1090/jams826
ID  - 10_1090_jams826
ER  - 
%0 Journal Article
%A Boyarchenko, Mitya
%A Weinstein, Jared
%T Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛)
%J Journal of the American Mathematical Society
%D 2016
%P 177-236
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams826/
%R 10.1090/jams826
%F 10_1090_jams826
Boyarchenko, Mitya; Weinstein, Jared. Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛). Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 177-236. doi: 10.1090/jams826

[1] Théorie des topos et cohomologie étale des schémas. Tome 3 1973

[2] Boyarchenko, Mitya Deligne-Lusztig constructions for unipotent and 𝑝-adic groups 2012

[3] Boyarchenko, Mitya, Drinfeld, Vladimir A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic 2006

[4] Boyarchenko, Mitya, Weinstein, Jared Geometric realization of special cases of local Langlands and Jacquet-Langlands correspondences 2013

[5] De Jong, A. J. Crystalline Dieudonné module theory via formal and rigid geometry Inst. Hautes Études Sci. Publ. Math. 1998 175

[6] Deligne, P. Cohomologie étale 1977

[7] Deligne, P. La conjecture de Weil II Publ. Math. IHES 1980

[8] Deligne, P., Lusztig, G. Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161

[9] Hopkins, M. J., Gross, B. H. Equivariant vector bundles on the Lubin-Tate moduli space 1994 23 88

[10] Harris, Michael, Taylor, Richard The geometry and cohomology of some simple Shimura varieties 2001

[11] Henniart, Guy Correspondance de Langlands-Kazhdan explicite dans le cas non ramifié Math. Nachr. 1992 7 26

[12] Henniart, Guy Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier, Séminaire de Théorie des Nombres, Paris, 1990–91 1993

[13] Howe, Roger E. Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛} Pacific J. Math. 1977 437 460

[14] Huber, R. A generalization of formal schemes and rigid analytic varieties Math. Z. 1994 513 551

[15] Kazhdan, David On lifting 1984 209 249

[16] Lubin, Jonathan, Tate, John Formal complex multiplication in local fields Ann. of Math. (2) 1965 380 387

[17] Scholze, Peter Perfectoid spaces Publ. Math. Inst. Hautes Études Sci. 2012 245 313

[18] Scholze, Peter, Weinstein, Jared Moduli of 𝑝-divisible groups Camb. J. Math. 2013 145 237

[19] Tate, J. Number theoretic background 1979 3 26

[20] Weinstein, Jared Good reduction of affinoids on the Lubin-Tate tower Doc. Math. 2010 981 1007

[21] Weinstein, Jared Semistable models for modular curves of arbitrary level 2012

[22] Yoshida, Teruyoshi On non-abelian Lubin-Tate theory via vanishing cycles 2010 361 402

Cité par Sources :