Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_928,
author = {Schreieder, Stefan},
title = {Stably irrational hypersurfaces of small slopes},
journal = {Journal of the American Mathematical Society},
pages = {1171--1199},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2019},
doi = {10.1090/jams/928},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/928/}
}
TY - JOUR AU - Schreieder, Stefan TI - Stably irrational hypersurfaces of small slopes JO - Journal of the American Mathematical Society PY - 2019 SP - 1171 EP - 1199 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/928/ DO - 10.1090/jams/928 ID - 10_1090_jams_928 ER -
Schreieder, Stefan. Stably irrational hypersurfaces of small slopes. Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 1171-1199. doi: 10.1090/jams/928
[1] , Some elementary examples of unirational varieties which are not rational Proc. London Math. Soc. (3) 1972 75 95
[2] Rationality problems and conjectures of Milnor and Bloch-Kato Compos. Math. 2013 1312 1326
[3] A very general sextic double solid is not stably rational Bull. Lond. Math. Soc. 2016 321 324
[4] , The intermediate Jacobian of the cubic threefold Ann. of Math. (2) 1972 281 356
[5] Birational invariants, purity and the Gersten conjecture 1995 1 64
[6] , Variétés unirationnelles non rationnelles: au-delà de lâexemple dâArtin et Mumford Invent. Math. 1989 141 158
[7] , Groupe de Chow des zéro-cycles sur les fibrés en quadriques ð¾-Theory 1993 477 500
[8] , Hypersurfaces quartiques de dimension 3: non-rationalité stable Ann. Sci. Ãc. Norm. Supér. (4) 2016 371 397
[9] , Cyclic covers that are not stably rational Izv. Ross. Akad. Nauk Ser. Mat. 2016 35 48
[10] , Cohomologie non ramifiée et conjecture de Hodge entière Duke Math. J. 2012 735 801
[11] , , On the unirationality of the quintic hypersurface containing a 3-dimensional linear space Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 2008
[12] Birationally rigid hypersurfaces Invent. Math. 2013 533 566
[13] Erratum to: Birationally rigid hypersurfaces [ MR3049929] Invent. Math. 2016 675 680
[14] Smoothness, semi-stability and alterations Inst. Hautes Ãtudes Sci. Publ. Math. 1996 51 93
[15] , Pfister forms and ð¾-theory of fields J. Algebra 1972 181 213
[16] Intersection theory 1998
[17] , , Stable rationality and conic bundles Math. Ann. 2016 1201 1217
[18] , , Stable rationality of quadric surface bundles over surfaces Acta Math. 2018 341 365
[19] , , A very general quartic double fourfold is not stably rational Algebr. Geom. 2019 64 75
[20] , Exposé X. Gabberâs modification theorem (log smooth case) Astérisque 2014 167 212
[21] , Three-dimensional quartics and counterexamples to the Lüroth problem Mat. Sb. (N.S.) 1971 140 166
[22] , On standard norm varieties Ann. Sci. Ãc. Norm. Supér. (4) 2013
[23] The Gersten conjecture for Milnor ð¾-theory Invent. Math. 2009 1 33
[24] Nonrational hypersurfaces J. Amer. Math. Soc. 1995 241 249
[25] Rational curves on algebraic varieties 1996
[26] Introduction to quadratic forms over fields 2005
[27] Unramified elements in cycle modules J. Lond. Math. Soc. (2) 2008 51 64
[28] Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of Mumford Compositio Math. 1973 63 82
[29] Birational isomorphisms of four-dimensional quintics Invent. Math. 1987 303 329
[30] Birational automorphisms of Fano hypersurfaces Invent. Math. 1998 401 426
[31] Galois cohomology 1997
[32] On the rationality problem for quadric bundles Duke Math. J. 2019 187 223
[33] Quadric surface bundles over surfaces and stable rationality Algebra Number Theory 2018 479 490
[34] Hypersurfaces that are not stably rational J. Amer. Math. Soc. 2016 883 891
[35] Motivic cohomology with ð/2-coefficients Publ. Math. Inst. Hautes Ãtudes Sci. 2003 59 104
[36] On integral Hodge classes on uniruled or Calabi-Yau threefolds 2006 43 73
[37] Some aspects of the Hodge conjecture Jpn. J. Math. 2007 261 296
[38] Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal J. Algebraic Geom. 2013 141 174
[39] Unirational threefolds with no universal codimension 2 cycle Invent. Math. 2015 207 237
Cité par Sources :