Voir la notice de l'article provenant de la source American Mathematical Society
Premet, Alexander 1 ; Stewart, David 2
@article{10_1090_jams_926,
author = {Premet, Alexander and Stewart, David},
title = {Classification of the maximal subalgebras of exceptional {Lie} algebras over fields of good characteristic},
journal = {Journal of the American Mathematical Society},
pages = {965--1008},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2019},
doi = {10.1090/jams/926},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/926/}
}
TY - JOUR AU - Premet, Alexander AU - Stewart, David TI - Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic JO - Journal of the American Mathematical Society PY - 2019 SP - 965 EP - 1008 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/926/ DO - 10.1090/jams/926 ID - 10_1090_jams_926 ER -
%0 Journal Article %A Premet, Alexander %A Stewart, David %T Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic %J Journal of the American Mathematical Society %D 2019 %P 965-1008 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/926/ %R 10.1090/jams/926 %F 10_1090_jams_926
Premet, Alexander; Stewart, David. Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic. Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 965-1008. doi: 10.1090/jams/926
[1] , , The recognition theorem for graded Lie algebras in prime characteristic Mem. Amer. Math. Soc. 2009
[2] , , , Complete reducibility and separability Trans. Amer. Math. Soc. 2010 4283 4311
[3] Trace forms on Lie algebras Canadian J. Math. 1962 553 564
[4] Linear algebraic groups 1991
[5] Finite groups of Lie type 1993
[6] On tilting modules for algebraic groups Math. Z. 1993 39 60
[7] Semisimple subalgebras of semisimple Lie algebras Mat. Sbornik N.S. 1952
[8] , Algebraic geometry I 2010
[9] On the smoothness of centralizers in reductive groups Trans. Amer. Math. Soc. 2013 3753 3774
[10] , Maximal subalgebras of Cartan type in the exceptional Lie algebras Selecta Math. (N.S.) 2016 765 799
[11] Algebraic groups and modular Lie algebras 1967 76
[12] Classes of restricted Lie algebras of characteristic ð. II Duke Math. J. 1943 107 121
[13] Representations of algebraic groups 2003
[14] Nilpotent orbits in representation theory 2004 1 211
[15] , The maximal subgroups of positive dimension in exceptional algebraic groups Mem. Amer. Math. Soc. 2004
[16] , Centres of centralizers of unipotent elements in simple algebraic groups Mem. Amer. Math. Soc. 2011
[17] Small degree representations of finite Chevalley groups in defining characteristic LMS J. Comput. Math. 2001 135 169
[18] Optimal ðð¿(2)-homomorphisms Comment. Math. Helv. 2005 391 426
[19] Algebraic groups associated with Lie ð-algebras of Cartan type Mat. Sb. (N.S.) 1983 82 96
[20] Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic Mat. Sb. (N.S.) 1987
[21] The Green ring of a simple three-dimensional Lie ð-algebra Izv. Vyssh. Uchebn. Zaved. Mat. 1991 56 67
[22] A theorem on the restriction of invariants, and nilpotent elements in ð_{ð} Mat. Sb. 1991 746 773
[23] An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics Trans. Amer. Math. Soc. 1995 2961 2988
[24] Nilpotent orbits in good characteristic and the Kempf-Rousseau theory J. Algebra 2003 338 366
[25] A modular analogue of Morozovâs theorem on maximal subalgebras of simple Lie algebras Adv. Math. 2017 833 884
[26] , Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic J. Inst. Math. Jussieu 2018 583 613
[27] , Simple Lie algebras of small characteristic. II. Exceptional roots J. Algebra 1999 190 301
[28] , Quadratic modules for Chevalley groups over fields of odd characteristics Math. Nachr. 1983 65 96
[29] The restricted Ermolaev algebra and ð¹â Exp. Math. 2018 272 276
[30] Maximal subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1991
[31] Unipotent elements, tilting modules, and saturation Invent. Math. 2000 467 502
[32] Modular Lie algebras 1967
[33] Existence of good transversal slices to nilpotent orbits in good characteristic J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1984 283 286
[34] Springer isomorphisms in characteristic ð Transform. Groups 2015 1141 1153
[35] On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers LMS J. Comput. Math. 2016 235 258
[36] , The Jacobson-Morozov theorem and complete reducibility of Lie subalgebras Proc. Lond. Math. Soc. (3) 2018 68 100
[37] Simple Lie algebras over fields of positive characteristic. I 2004
[38] Irreducible subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1988
[39] ð´â-type overgroups of elements of order ð in semisimple algebraic groups and the associated finite groups J. Algebra 1995 34 76
Cité par Sources :