Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 965-1008

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be an exceptional simple algebraic group over an algebraically closed field $k$ and suppose that $p={\operatorname {char}}(k)$ is a good prime for $G$. In this paper we classify the maximal Lie subalgebras $\mathfrak {m}$ of the Lie algebra $\mathfrak {g}=\operatorname {Lie}(G)$. Specifically, we show that either $\mathfrak {m}=\operatorname {Lie}(M)$ for some maximal connected subgroup $M$ of $G$, or $\mathfrak {m}$ is a maximal Witt subalgebra of $\mathfrak {g}$, or $\mathfrak {m}$ is a maximal exotic semidirect product. The conjugacy classes of maximal connected subgroups of $G$ are known thanks to the work of Seitz, Testerman, and Liebeck–Seitz. All maximal Witt subalgebras of $\mathfrak {g}$ are $G$-conjugate and they occur when $G$ is not of type ${\mathrm {E}}_6$ and $p-1$ coincides with the Coxeter number of $G$. We show that there are two conjugacy classes of maximal exotic semidirect products in $\mathfrak {g}$, one in characteristic $5$ and one in characteristic $7$, and both occur when $G$ is a group of type ${\mathrm {E}}_7$.
DOI : 10.1090/jams/926

Premet, Alexander 1 ; Stewart, David 2

1 School of Mathematics, The University of Manchester, Oxford Road, M13 9PL, United Kingdom
2 University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
@article{10_1090_jams_926,
     author = {Premet, Alexander and Stewart, David},
     title = {Classification of the maximal subalgebras of exceptional {Lie} algebras over fields of good characteristic},
     journal = {Journal of the American Mathematical Society},
     pages = {965--1008},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2019},
     doi = {10.1090/jams/926},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/926/}
}
TY  - JOUR
AU  - Premet, Alexander
AU  - Stewart, David
TI  - Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 965
EP  - 1008
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/926/
DO  - 10.1090/jams/926
ID  - 10_1090_jams_926
ER  - 
%0 Journal Article
%A Premet, Alexander
%A Stewart, David
%T Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
%J Journal of the American Mathematical Society
%D 2019
%P 965-1008
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/926/
%R 10.1090/jams/926
%F 10_1090_jams_926
Premet, Alexander; Stewart, David. Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic. Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 965-1008. doi: 10.1090/jams/926

[1] Benkart, Georgia, Gregory, Thomas, Premet, Alexander The recognition theorem for graded Lie algebras in prime characteristic Mem. Amer. Math. Soc. 2009

[2] Bate, Michael, Martin, Benjamin, Rã¶Hrle, Gerhard, Tange, Rudolf Complete reducibility and separability Trans. Amer. Math. Soc. 2010 4283 4311

[3] Block, Richard Trace forms on Lie algebras Canadian J. Math. 1962 553 564

[4] Borel, Armand Linear algebraic groups 1991

[5] Carter, Roger W. Finite groups of Lie type 1993

[6] Donkin, Stephen On tilting modules for algebraic groups Math. Z. 1993 39 60

[7] Dynkin, E. B. Semisimple subalgebras of semisimple Lie algebras Mat. Sbornik N.S. 1952

[8] Gã¶Rtz, Ulrich, Wedhorn, Torsten Algebraic geometry I 2010

[9] Herpel, Sebastian On the smoothness of centralizers in reductive groups Trans. Amer. Math. Soc. 2013 3753 3774

[10] Herpel, Sebastian, Stewart, David I. Maximal subalgebras of Cartan type in the exceptional Lie algebras Selecta Math. (N.S.) 2016 765 799

[11] Humphreys, James E. Algebraic groups and modular Lie algebras 1967 76

[12] Jacobson, N. Classes of restricted Lie algebras of characteristic 𝑝. II Duke Math. J. 1943 107 121

[13] Jantzen, Jens Carsten Representations of algebraic groups 2003

[14] Jantzen, Jens Carsten Nilpotent orbits in representation theory 2004 1 211

[15] Liebeck, Martin W., Seitz, Gary M. The maximal subgroups of positive dimension in exceptional algebraic groups Mem. Amer. Math. Soc. 2004

[16] Lawther, R., Testerman, D. M. Centres of centralizers of unipotent elements in simple algebraic groups Mem. Amer. Math. Soc. 2011

[17] Lã¼Beck, Frank Small degree representations of finite Chevalley groups in defining characteristic LMS J. Comput. Math. 2001 135 169

[18] Mcninch, George J. Optimal 𝑆𝐿(2)-homomorphisms Comment. Math. Helv. 2005 391 426

[19] Premet, A. A. Algebraic groups associated with Lie 𝑝-algebras of Cartan type Mat. Sb. (N.S.) 1983 82 96

[20] Premet, A. A. Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic Mat. Sb. (N.S.) 1987

[21] Premet, A. A. The Green ring of a simple three-dimensional Lie 𝑝-algebra Izv. Vyssh. Uchebn. Zaved. Mat. 1991 56 67

[22] Premet, A. A. A theorem on the restriction of invariants, and nilpotent elements in 𝑊_{𝑛} Mat. Sb. 1991 746 773

[23] Premet, Alexander An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics Trans. Amer. Math. Soc. 1995 2961 2988

[24] Premet, Alexander Nilpotent orbits in good characteristic and the Kempf-Rousseau theory J. Algebra 2003 338 366

[25] Premet, Alexander A modular analogue of Morozov’s theorem on maximal subalgebras of simple Lie algebras Adv. Math. 2017 833 884

[26] Premet, Alexander, Stewart, David I. Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic J. Inst. Math. Jussieu 2018 583 613

[27] Premet, Alexander, Strade, Helmut Simple Lie algebras of small characteristic. II. Exceptional roots J. Algebra 1999 190 301

[28] Premet, A. A., Suprunenko, I. D. Quadratic modules for Chevalley groups over fields of odd characteristics Math. Nachr. 1983 65 96

[29] Purslow, Thomas The restricted Ermolaev algebra and 𝐹₄ Exp. Math. 2018 272 276

[30] Seitz, Gary M. Maximal subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1991

[31] Seitz, Gary M. Unipotent elements, tilting modules, and saturation Invent. Math. 2000 467 502

[32] Seligman, G. B. Modular Lie algebras 1967

[33] Spaltenstein, N. Existence of good transversal slices to nilpotent orbits in good characteristic J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1984 283 286

[34] Sobaje, Paul Springer isomorphisms in characteristic 𝑝 Transform. Groups 2015 1141 1153

[35] Stewart, David I. On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers LMS J. Comput. Math. 2016 235 258

[36] Stewart, David I., Thomas, Adam R. The Jacobson-Morozov theorem and complete reducibility of Lie subalgebras Proc. Lond. Math. Soc. (3) 2018 68 100

[37] Strade, Helmut Simple Lie algebras over fields of positive characteristic. I 2004

[38] Testerman, Donna M. Irreducible subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1988

[39] Testerman, Donna M. 𝐴₁-type overgroups of elements of order 𝑝 in semisimple algebraic groups and the associated finite groups J. Algebra 1995 34 76

Cité par Sources :