Regular supercuspidal representations
Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 1071-1170

Voir la notice de l'article provenant de la source American Mathematical Society

We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive $p$-adic group $G$ arise from pairs $(S,\theta )$, where $S$ is a tame elliptic maximal torus of $G$, and $\theta$ is a character of $S$ satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive $p$-adic groups.
DOI : 10.1090/jams/925

Kaletha, Tasho 1

1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
@article{10_1090_jams_925,
     author = {Kaletha, Tasho},
     title = {Regular supercuspidal representations},
     journal = {Journal of the American Mathematical Society},
     pages = {1071--1170},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2019},
     doi = {10.1090/jams/925},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/925/}
}
TY  - JOUR
AU  - Kaletha, Tasho
TI  - Regular supercuspidal representations
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 1071
EP  - 1170
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/925/
DO  - 10.1090/jams/925
ID  - 10_1090_jams_925
ER  - 
%0 Journal Article
%A Kaletha, Tasho
%T Regular supercuspidal representations
%J Journal of the American Mathematical Society
%D 2019
%P 1071-1170
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/925/
%R 10.1090/jams/925
%F 10_1090_jams_925
Kaletha, Tasho. Regular supercuspidal representations. Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 1071-1170. doi: 10.1090/jams/925

[1] Artin, M., Bertin, J. E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P. Schémas en groupes. Fasc. 1: Exposés 1 à 4 1963

[2] Adler, Jeffrey D. Refined anisotropic 𝐾-types and supercuspidal representations Pacific J. Math. 1998 1 32

[3] Adrian, Moshe Isaac A new construction of the tame local Langlands correspondence for GL(n,F), n a prime 2010 203

[4] Adrian, Moshe A new realization of the Langlands correspondence for 𝑃𝐺𝐿(2,𝐹) J. Number Theory 2013 446 474

[5] Adler, Jeffrey D., Spice, Loren Good product expansions for tame elements of 𝑝-adic groups Int. Math. Res. Pap. IMRP 2008

[6] Adler, Jeffrey D., Spice, Loren Supercuspidal characters of reductive 𝑝-adic groups Amer. J. Math. 2009 1137 1210

[7] Bushnell, Colin J., Henniart, Guy The essentially tame local Langlands correspondence. I J. Amer. Math. Soc. 2005 685 710

[8] Bushnell, Colin J., Henniart, Guy The essentially tame local Langlands correspondence. II. Totally ramified representations Compos. Math. 2005 979 1011

[9] Bosch, Siegfried, Lã¼Tkebohmert, Werner, Raynaud, Michel Néron models 1990

[10] Borovoi, Mikhail Abelian Galois cohomology of reductive groups Mem. Amer. Math. Soc. 1998

[11] Borel, A., Springer, T. A. Rationality properties of linear algebraic groups. II Tohoku Math. J. (2) 1968 443 497

[12] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[13] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[14] Bruhat, F., Tits, J. Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1987 671 698

[15] Carter, Roger W. Finite groups of Lie type 1993

[16] Debacker, Stephen Some applications of Bruhat-Tits theory to harmonic analysis on a reductive 𝑝-adic group Michigan Math. J. 2002 241 261

[17] Debacker, Stephen Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory Michigan Math. J. 2006 157 178

[18] Deligne, P., Lusztig, G. Representations of reductive groups over finite fields Ann. of Math. (2) 1976 103 161

[19] Debacker, Stephen, Reeder, Mark Depth-zero supercuspidal 𝐿-packets and their stability Ann. of Math. (2) 2009 795 901

[20] Debacker, Stephen, Reeder, Mark On some generic very cuspidal representations Compos. Math. 2010 1029 1055

[21] Debacker, Stephen, Spice, Loren Stability of character sums for positive-depth, supercuspidal representations J. Reine Angew. Math. 2018 47 78

[22] Gille, P. Type des tores maximaux des groupes semi-simples J. Ramanujan Math. Soc. 2004 213 230

[23] Hakim, Jeffrey Constructing tame supercuspidal representations Represent. Theory 2018 45 86

[24] Hales, Thomas C. A simple definition of transfer factors for unramified groups 1993 109 134

[25] He, Xuhua On the affineness of Deligne-Lusztig varieties J. Algebra 2008 1207 1219

[26] Hakim, Jeffrey, Murnaghan, Fiona Distinguished tame supercuspidal representations Int. Math. Res. Pap. IMRP 2008

[27] Howe, Roger E. Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛} Pacific J. Math. 1977 437 460

[28] Hewitt, Edwin, Ross, Kenneth A. Abstract harmonic analysis. Vol. I 1979

[29] Kaletha, Tasho Endoscopic character identities for depth-zero supercuspidal 𝐿-packets Duke Math. J. 2011 161 224

[30] Kaletha, Tasho Genericity and contragredience in the local Langlands correspondence Algebra Number Theory 2013 2447 2474

[31] Kaletha, Tasho Supercuspidal 𝐿-packets via isocrystals Amer. J. Math. 2014 203 239

[32] Kaletha, Tasho Epipelagic 𝐿-packets and rectifying characters Invent. Math. 2015 1 89

[33] Kaletha, Tasho Rigid inner forms of real and 𝑝-adic groups Ann. of Math. (2) 2016 559 632

[34] Kaletha, Tasho Global rigid inner forms and multiplicities of discrete automorphic representations Invent. Math. 2018 271 369

[35] Kaletha, Tasho Rigid inner forms vs isocrystals J. Eur. Math. Soc. (JEMS) 2018 61 101

[36] Kim, Ju-Lee Supercuspidal representations: an exhaustion theorem J. Amer. Math. Soc. 2007 273 320

[37] Kostant, Bertram On Whittaker vectors and representation theory Invent. Math. 1978 101 184

[38] Kottwitz, Robert E. Rational conjugacy classes in reductive groups Duke Math. J. 1982 785 806

[39] Kottwitz, Robert E. Sign changes in harmonic analysis on reductive groups Trans. Amer. Math. Soc. 1983 289 297

[40] Kottwitz, Robert E. Stable trace formula: cuspidal tempered terms Duke Math. J. 1984 611 650

[41] Kottwitz, Robert E. Stable trace formula: elliptic singular terms Math. Ann. 1986 365 399

[42] Kottwitz, Robert E. Isocrystals with additional structure. II Compositio Math. 1997 255 339

[43] Kottwitz, Robert E. Transfer factors for Lie algebras Represent. Theory 1999 127 138

[44] Kottwitz, Robert E., Shelstad, Diana Foundations of twisted endoscopy Astérisque 1999

[45] Kutzko, P. C. Mackey’s theorem for nonunitary representations Proc. Amer. Math. Soc. 1977 173 175

[46] Langlands, R. P. Stable conjugacy: definitions and lemmas Canadian J. Math. 1979 700 725

[47] Langlands, R. P. Les débuts d’une formule des traces stable 1983

[48] Langlands, R. P. On the classification of irreducible representations of real algebraic groups 1989 101 170

[49] Langlands, Robert P. Singularités et transfert Ann. Math. Qué. 2013 173 253

[50] Langlands, R. P., Shelstad, D. On the definition of transfer factors Math. Ann. 1987 219 271

[51] Langlands, R., Shelstad, D. Descent for transfer factors 1990 485 563

[52] Morris, Lawrence 𝑃-cuspidal representations of level one Proc. London Math. Soc. (3) 1989 550 558

[53] Moy, Allen Local constants and the tame Langlands correspondence Amer. J. Math. 1986 863 930

[54] Moy, Allen, Prasad, Gopal Unrefined minimal 𝐾-types for 𝑝-adic groups Invent. Math. 1994 393 408

[55] Moy, Allen, Prasad, Gopal Jacquet functors and unrefined minimal 𝐾-types Comment. Math. Helv. 1996 98 121

[56] Murnaghan, Fiona Parametrization of tame supercuspidal representations 2011 439 469

[57] Må“Glin, C., Waldspurger, J.-L. Modèles de Whittaker dégénérés pour des groupes 𝑝-adiques Math. Z. 1987 427 452

[58] Ngã´, Bao Chã¢U Le lemme fondamental pour les algèbres de Lie Publ. Math. Inst. Hautes Études Sci. 2010 1 169

[59] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[60] Pappas, G., Rapoport, M. Twisted loop groups and their affine flag varieties Adv. Math. 2008 118 198

[61] Prasad, Gopal Galois-fixed points in the Bruhat-Tits building of a reductive group Bull. Soc. Math. France 2001 169 174

[62] Raghunathan, M. S. Tori in quasi-split-groups J. Ramanujan Math. Soc. 2004 281 287

[63] Rapoport, Michael A guide to the reduction modulo 𝑝 of Shimura varieties Astérisque 2005 271 318

[64] Reeder, Mark Supercuspidal 𝐿-packets of positive depth and twisted Coxeter elements J. Reine Angew. Math. 2008 1 33

[65] Riehm, Carl The norm 1 group of a 𝔓-adic division algebra Amer. J. Math. 1970 499 523

[66] Roe, David Lawrence The Local Langlands Correspondence for Tamely Ramified Groups 2011 156

[67] Rapoport, M., Richartz, M. On the classification and specialization of 𝐹-isocrystals with additional structure Compositio Math. 1996 153 181

[68] Reeder, Mark, Yu, Jiu-Kang Epipelagic representations and invariant theory J. Amer. Math. Soc. 2014 437 477

[69] Serre, Jean-Pierre Local fields 1979

[70] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[71] Shelstad, D. Characters and inner forms of a quasi-split group over 𝑅 Compositio Math. 1979 11 45

[72] Shelstad, D. 𝐿-indistinguishability for real groups Math. Ann. 1982 385 430

[73] Shelstad, D. A formula for regular unipotent germs Astérisque 1989 275 277

[74] Shelstad, D. Tempered endoscopy for real groups. I. Geometric transfer with canonical factors 2008 215 246

[75] Shelstad, D. Tempered endoscopy for real groups. III. Inversion of transfer and 𝐿-packet structure Represent. Theory 2008 369 402

[76] Shelstad, D. Tempered endoscopy for real groups. II. Spectral transfer factors 2010 236 276

[77] Spice, Loren Topological Jordan decompositions J. Algebra 2008 3141 3163

[78] Springer, T. A. Linear algebraic groups 1981

[79] Springer, T. A., Steinberg, R. Conjugacy classes 1970 167 266

[80] Steinberg, Robert Regular elements of semisimple algebraic groups Inst. Hautes Études Sci. Publ. Math. 1965 49 80

[81] Steinberg, Robert Endomorphisms of linear algebraic groups 1968 108

[82] Tate, J. Number theoretic background 1979 3 26

[83] Tits, Jacques Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.) 1978

[84] Tits, J. Reductive groups over local fields 1979 29 69

[85] Vogan, David A., Jr. Gel′fand-Kirillov dimension for Harish-Chandra modules Invent. Math. 1978 75 98

[86] Waldspurger, J.-L. Le lemme fondamental implique le transfert Compositio Math. 1997 153 236

[87] Waldspurger, Jean-Loup Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés Astérisque 2001

[88] Waldspurger, J.-L. Endoscopie et changement de caractéristique J. Inst. Math. Jussieu 2006 423 525

[89] Yu, Jiu-Kang Construction of tame supercuspidal representations J. Amer. Math. Soc. 2001 579 622

[90] Yu, Jiu-Kang On the local Langlands correspondence for tori 2009 177 183

[91] Yu, Jiu-Kang Smooth models associated to concave functions in Bruhat-Tits theory 2015 227 258

Cité par Sources :