Contact homology and virtual fundamental cycles
Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 825-919

Voir la notice de l'article provenant de la source American Mathematical Society

We give a construction of contact homology in the sense of Eliashberg–Givental–Hofer. Specifically, we construct coherent virtual fundamental cycles on the relevant compactified moduli spaces of pseudo-holomorphic curves.
DOI : 10.1090/jams/924

Pardon, John 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_jams_924,
     author = {Pardon, John},
     title = {Contact homology and virtual fundamental cycles},
     journal = {Journal of the American Mathematical Society},
     pages = {825--919},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2019},
     doi = {10.1090/jams/924},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/924/}
}
TY  - JOUR
AU  - Pardon, John
TI  - Contact homology and virtual fundamental cycles
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 825
EP  - 919
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/924/
DO  - 10.1090/jams/924
ID  - 10_1090_jams_924
ER  - 
%0 Journal Article
%A Pardon, John
%T Contact homology and virtual fundamental cycles
%J Journal of the American Mathematical Society
%D 2019
%P 825-919
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/924/
%R 10.1090/jams/924
%F 10_1090_jams_924
Pardon, John. Contact homology and virtual fundamental cycles. Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 825-919. doi: 10.1090/jams/924

[1] Abouzaid, Mohammed Framed bordism and Lagrangian embeddings of exotic spheres Ann. of Math. (2) 2012 71 185

[2] Abreu, Miguel, Macarini, Leonardo Contact homology of good toric contact manifolds Compos. Math. 2012 304 334

[3] Adams, Robert A. Sobolev spaces 1975

[4] Borman, Matthew Strom, Eliashberg, Yakov, Murphy, Emmy Existence and classification of overtwisted contact structures in all dimensions Acta Math. 2015 281 361

[5] Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E. Compactness results in symplectic field theory Geom. Topol. 2003 799 888

[6] Bourgeois, Frederic A Morse-Bott approach to contact homology 2002 123

[7] Bourgeois, Frã©Dã©Ric A Morse-Bott approach to contact homology 2003 55 77

[8] Bourgeois, Frã©Dã©Ric Contact homology and homotopy groups of the space of contact structures Math. Res. Lett. 2006 71 85

[9] Bourgeois, Frã©Dã©Ric A survey of contact homology 2009 45 71

[10] Bourgeois, Frã©Dã©Ric, Mohnke, Klaus Coherent orientations in symplectic field theory Math. Z. 2004 123 146

[11] Bourgeois, Frã©Dã©Ric, Van Koert, Otto Contact homology of left-handed stabilizations and plumbing of open books Commun. Contemp. Math. 2010 223 263

[12] Casals, Roger, Murphy, Emmy, Presas, Francisco Geometric criteria for overtwistedness J. Amer. Math. Soc. 2019 563 604

[13] Cieliebak, Kai, Eliashberg, Yakov From Stein to Weinstein and back 2012

[14] Cieliebak, Kai, Latschev, Janko The role of string topology in symplectic field theory 2009 113 146

[15] Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 1969 75 109

[16] Ekholm, Tobias, Etnyre, John, Sullivan, Michael The contact homology of Legendrian submanifolds in ℝ²ⁿ⁺¹ J. Differential Geom. 2005 177 305

[17] Ekholm, Tobias, Honda, Ko, Kã¡Lmã¡N, Tamã¡S Legendrian knots and exact Lagrangian cobordisms J. Eur. Math. Soc. (JEMS) 2016 2627 2689

[18] Ekholm, Tobias, Oancea, Alexandru Symplectic and contact differential graded algebras Geom. Topol. 2017 2161 2230

[19] Eliashberg, Y. Classification of overtwisted contact structures on 3-manifolds Invent. Math. 1989 623 637

[20] Eliashberg, Y., Givental, A., Hofer, H. Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673

[21] Eliashberg, Yakov Invariants in contact topology Doc. Math. 1998 327 338

[22] Eliashberg, Yakov Symplectic field theory and its applications 2007 217 246

[23] Eliashberg, Yakov, Kim, Sang Seon, Polterovich, Leonid Geometry of contact transformations and domains: orderability versus squeezing Geom. Topol. 2006 1635 1747

[24] Floer, A., Hofer, H. Coherent orientations for periodic orbit problems in symplectic geometry Math. Z. 1993 13 38

[25] Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru Lagrangian intersection Floer theory: anomaly and obstruction. Part I 2009

[26] Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru Lagrangian intersection Floer theory: anomaly and obstruction. Part II 2009

[27] Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru Shrinking good coordinate systems associated to Kuranishi structures J. Symplectic Geom. 2016 1295 1310

[28] Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I 2018 133 190

[29] Fukaya, Kenji, Ono, Kaoru Arnold conjecture and Gromov-Witten invariant Topology 1999 933 1048

[30] Gromov, M. Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347

[31] Hofer, H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three Invent. Math. 1993 515 563

[32] Hofer, H., Wysocki, K., Zehnder, E. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants Geom. Funct. Anal. 1995 270 328

[33] Hofer, H., Wysocki, K., Zehnder, E. Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics Ann. Inst. H. Poincaré C Anal. Non Linéaire 1996 337 379

[34] Hofer, H., Wysocki, K., Zehnder, E. Correction to: “Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics” [Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 3, 337–379 Ann. Inst. H. Poincaré C Anal. Non Linéaire 1998 535 538

[35] Hofer, H., Wysocki, K., Zehnder, E. Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory 1999 381 475

[36] Hofer, H., Wysocki, K., Zehnder, E. Finite energy cylinders of small area Ergodic Theory Dynam. Systems 2002 1451 1486

[37] Hofer, H., Wysocki, K., Zehnder, E. A general Fredholm theory. I. A splicing-based differential geometry J. Eur. Math. Soc. (JEMS) 2007 841 876

[38] Hofer, H., Wysocki, K., Zehnder, E. Integration theory on the zero sets of polyfold Fredholm sections Math. Ann. 2010 139 198

[39] Hofer, Helmut, Wysocki, Kris, Zehnder, Eduard A general Fredholm theory. III. Fredholm functors and polyfolds Geom. Topol. 2009 2279 2387

[40] Hofer, Helmut, Wysocki, Kris, Zehnder, Eduard sc-smoothness, retractions and new models for smooth spaces Discrete Contin. Dyn. Syst. 2010 665 788

[41] Hofer, H., Wysocki, K., Zehnder, E. Applications of polyfold theory I: The polyfolds of Gromov-Witten theory Mem. Amer. Math. Soc. 2017

[42] Hofer, Helmut, Wysocki, Krzysztof, Zehnder, Eduard A general Fredholm theory. II. Implicit function theorems Geom. Funct. Anal. 2009 206 293

[43] Hã¶Rmander, Lars Linear partial differential operators 1969

[44] Hutchings, Michael An index inequality for embedded pseudoholomorphic curves in symplectizations J. Eur. Math. Soc. (JEMS) 2002 313 361

[45] Hutchings, Michael The embedded contact homology index revisited 2009 263 297

[46] Hutchings, Michael, Nelson, Jo Cylindrical contact homology for dynamically convex contact forms in three dimensions J. Symplectic Geom. 2016 983 1012

[47] Hutchings, Michael, Taubes, Clifford Henry Gluing pseudoholomorphic curves along branched covered cylinders. I J. Symplectic Geom. 2007 43 137

[48] Hutchings, Michael, Taubes, Clifford Henry Gluing pseudoholomorphic curves along branched covered cylinders. II J. Symplectic Geom. 2009 29 133

[49] Joyce, Dominic An introduction to d-manifolds and derived differential geometry 2014 230 281

[50] Joyce, Dominic A generalization of manifolds with corners Adv. Math. 2016 760 862

[51] Kottke, Chris, Melrose, Richard B. Generalized blow-up of corners and fiber products Trans. Amer. Math. Soc. 2015 651 705

[52] Latschev, Janko, Wendl, Chris Algebraic torsion in contact manifolds Geom. Funct. Anal. 2011 1144 1195

[53] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds 1998 47 83

[54] Liu, Gang, Tian, Gang Floer homology and Arnold conjecture J. Differential Geom. 1998 1 74

[55] Lockhart, Robert B., Mcowen, Robert C. Elliptic differential operators on noncompact manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1985 409 447

[56] Massot, Patrick, Niederkrã¼Ger, Klaus, Wendl, Chris Weak and strong fillability of higher dimensional contact manifolds Invent. Math. 2013 287 373

[57] Mcduff, Dusa Constructing the virtual fundamental class of a Kuranishi atlas Algebr. Geom. Topol. 2019 151 238

[58] Mcduff, Dusa, Salamon, Dietmar 𝐽-holomorphic curves and quantum cohomology 1994

[59] Mcduff, Dusa, Salamon, Dietmar 𝐽-holomorphic curves and symplectic topology 2004

[60] Mcduff, Dusa, Wehrheim, Katrin Smooth Kuranishi atlases with isotropy Geom. Topol. 2017 2725 2809

[61] Mcduff, Dusa, Wehrheim, Katrin The topology of Kuranishi atlases Proc. Lond. Math. Soc. (3) 2017 221 292

[62] Mcduff, Dusa, Wehrheim, Katrin The fundamental class of smooth Kuranishi atlases with trivial isotropy J. Topol. Anal. 2018 71 243

[63] Muller, Marie-Paule Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves 1994 217 231

[64] Niederkrã¼Ger, Klaus The plastikstufe—a generalization of the overtwisted disk to higher dimensions Algebr. Geom. Topol. 2006 2473 2508

[65] Niederkrã¼Ger, Klaus, Wendl, Chris Weak symplectic fillings and holomorphic curves Ann. Sci. Éc. Norm. Supér. (4) 2011 801 853

[66] Pardon, John An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves Geom. Topol. 2016 779 1034

[67] Ruan, Yongbin Virtual neighborhoods and pseudo-holomorphic curves Turkish J. Math. 1999 161 231

[68] Salamon, Dietmar Lectures on Floer homology 1999 143 229

[69] Solomon, Jake P. Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions 2006

[70] Ustilovsky, Ilya Infinitely many contact structures on 𝑆^{4𝑚+1} Internat. Math. Res. Notices 1999 781 791

[71] Yau, Mei-Lin Vanishing of the contact homology of overtwisted contact 3-manifolds Bull. Inst. Math. Acad. Sin. (N.S.) 2006 211 229

Cité par Sources :