Voir la notice de l'article provenant de la source American Mathematical Society
Blasiak, Jonah 1 ; Morse, Jennifer 2 ; Pun, Anna 1 ; Summers, Daniel 1
@article{10_1090_jams_921,
     author = {Blasiak, Jonah and Morse, Jennifer and Pun, Anna and Summers, Daniel},
     title = {Catalan functions and {{\dh}-Schur} positivity},
     journal = {Journal of the American Mathematical Society},
     pages = {921--963},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2019},
     doi = {10.1090/jams/921},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/921/}
}
                      
                      
                    TY - JOUR AU - Blasiak, Jonah AU - Morse, Jennifer AU - Pun, Anna AU - Summers, Daniel TI - Catalan functions and ð-Schur positivity JO - Journal of the American Mathematical Society PY - 2019 SP - 921 EP - 963 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/921/ DO - 10.1090/jams/921 ID - 10_1090_jams_921 ER -
%0 Journal Article %A Blasiak, Jonah %A Morse, Jennifer %A Pun, Anna %A Summers, Daniel %T Catalan functions and ð-Schur positivity %J Journal of the American Mathematical Society %D 2019 %P 921-963 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/921/ %R 10.1090/jams/921 %F 10_1090_jams_921
Blasiak, Jonah; Morse, Jennifer; Pun, Anna; Summers, Daniel. Catalan functions and ð-Schur positivity. Journal of the American Mathematical Society, Tome 32 (2019) no. 4, pp. 921-963. doi: 10.1090/jams/921
[1] , Affine dual equivalence and ð-Schur functions J. Comb. 2012 343 399
[2] , Noncommutative Schur functions, switchboards, and Schur positivity Selecta Math. (N.S.) 2017 727 766
[3] A vanishing theorem for Dolbeault cohomology of homogeneous vector bundles J. Reine Angew. Math. 1997 153 169
[4] Line bundles on the cotangent bundle of the flag variety Invent. Math. 1993 1 20
[5] Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety 1994 1 19
[6] , A proof of the shuffle conjecture J. Amer. Math. Soc. 2018 661 697
[7] Skew-Linked Partitions and a Representation-Theoretic Model for k-Schur Functions 2010 71
[8] , , Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory Sém. Lothar. Combin. 1994
[9] , Noncommutative Schur functions and their applications Discrete Math. 1998 179 200
[10] Orthogonality of Milneâs polynomials and raising operators Discrete Math. 1992 247 264
[11] , On certain graded ð_{ð}-modules and the ð-Kostka polynomials Adv. Math. 1992 82 138
[12] , , , , A combinatorial formula for the character of the diagonal coinvariants Duke Math. J. 2005 195 232
[13] Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Amer. Math. Soc. 2001 941 1006
[14] Combinatorics, symmetric functions, and Hilbert schemes 2003 39 111
[15] Cohomology and the resolution of the nilpotent variety Math. Ann. 1976 249 252
[16] Vertex operators and Hall-Littlewood symmetric functions Adv. Math. 1991 226 248
[17] Geometric constructions of the irreducible representations of ðºð¿_{ð} 2011 1 18
[18] , , A bijection between Littlewood-Richardson tableaux and rigged configurations Selecta Math. (N.S.) 2002 67 135
[19] Schubert polynomials for the affine Grassmannian J. Amer. Math. Soc. 2008 259 281
[20] Affine Schubert classes, Schur positivity, and combinatorial Hopf algebras Bull. Lond. Math. Soc. 2011 328 334
[21] , , , Affine insertion and Pieri rules for the affine Grassmannian Mem. Amer. Math. Soc. 2010
[22] , , , The poset of ð-shapes and branching rules for ð-Schur functions Mem. Amer. Math. Soc. 2013
[23] , , Tableau atoms and a new Macdonald positivity conjecture Duke Math. J. 2003 103 146
[24] , Schur function analogs for a filtration of the symmetric function space J. Combin. Theory Ser. A 2003 191 224
[25] , Tableaux on ð+1-cores, reduced words for affine permutations, and ð-Schur expansions J. Combin. Theory Ser. A 2005 44 81
[26] , A ð-tableau characterization of ð-Schur functions Adv. Math. 2007 183 204
[27] , Quantum cohomology and the ð-Schur basis Trans. Amer. Math. Soc. 2008 2021 2040
[28] Some examples of square integrable representations of semisimple ð-adic groups Trans. Amer. Math. Soc. 1983 623 653
[29] Symmetric functions and Hall polynomials 1995
[30] Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles Selecta Math. (N.S.) 2010 315 342
[31] , Inhomogeneous lattice paths, generalized Kostka polynomials and ð´_{ð-1} supernomials Comm. Math. Phys. 1999 359 401
[32] A cyclage poset structure for Littlewood-Richardson tableaux European J. Combin. 2001 365 393
[33] Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties J. Algebraic Combin. 2002 151 187
[34] , Graded characters of modules supported in the closure of a nilpotent conjugacy class European J. Combin. 2000 257 288
[35] , Hall-Littlewood vertex operators and generalized Kostka polynomials Adv. Math. 2001 66 85
[36] Enumerative combinatorics. Vol. 2 1999
[37] On the action of the Hall-Littlewood vertex operator 1998 58
Cité par Sources :
