Existence and uniqueness for anisotropic and crystalline mean curvature flows
Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 779-824

Voir la notice de l'article provenant de la source American Mathematical Society

An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation. Such solutions satisfy a comparison principle and stability properties with respect to the approximation by suitably regularized problems. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz continuity. As a result of our analysis, we deduce the convergence of a minimizing movement scheme proposed by Almgren, Taylor, and Wang (1993) to a unique (up to fattening) “flat flow” in the case of general, including crystalline, anisotropies, solving a long-standing open question.
DOI : 10.1090/jams/919

Chambolle, Antonin 1 ; Morini, Massimiliano 2 ; Novaga, Matteo 3 ; Ponsiglione, Marcello 4

1 Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France
2 Dipartimento di Scienze, Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze, 7/A, Parma, Italy
3 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
4 Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
@article{10_1090_jams_919,
     author = {Chambolle, Antonin and Morini, Massimiliano and Novaga, Matteo and Ponsiglione, Marcello},
     title = {Existence and uniqueness for anisotropic and crystalline mean curvature flows},
     journal = {Journal of the American Mathematical Society},
     pages = {779--824},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2019},
     doi = {10.1090/jams/919},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/919/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Morini, Massimiliano
AU  - Novaga, Matteo
AU  - Ponsiglione, Marcello
TI  - Existence and uniqueness for anisotropic and crystalline mean curvature flows
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 779
EP  - 824
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/919/
DO  - 10.1090/jams/919
ID  - 10_1090_jams_919
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Morini, Massimiliano
%A Novaga, Matteo
%A Ponsiglione, Marcello
%T Existence and uniqueness for anisotropic and crystalline mean curvature flows
%J Journal of the American Mathematical Society
%D 2019
%P 779-824
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/919/
%R 10.1090/jams/919
%F 10_1090_jams_919
Chambolle, Antonin; Morini, Massimiliano; Novaga, Matteo; Ponsiglione, Marcello. Existence and uniqueness for anisotropic and crystalline mean curvature flows. Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 779-824. doi: 10.1090/jams/919

[1] Almeida, L., Chambolle, A., Novaga, M. Mean curvature flow with obstacles Ann. Inst. H. Poincaré C Anal. Non Linéaire 2012 667 681

[2] Almgren, Fred, Taylor, Jean E. Flat flow is motion by crystalline curvature for curves with crystalline energies J. Differential Geom. 1995 1 22

[3] Almgren, Fred, Taylor, Jean E., Wang, Lihe Curvature-driven flows: a variational approach SIAM J. Control Optim. 1993 387 438

[4] Ambrosio, L. Geometric evolution problems, distance function and viscosity solutions 2000 5 93

[5] Ambrosio, L., Dal Maso, G. A general chain rule for distributional derivatives Proc. Amer. Math. Soc. 1990 691 702

[6] Ambrosio, Luigi, Soner, Halil Mete Level set approach to mean curvature flow in arbitrary codimension J. Differential Geom. 1996 693 737

[7] Angenent, Sigurd, Gurtin, Morton E. Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface Arch. Rational Mech. Anal. 1989 323 391

[8] Angenent, S., Ilmanen, T., Chopp, D. L. A computed example of nonuniqueness of mean curvature flow in 𝐑³ Comm. Partial Differential Equations 1995 1937 1958

[9] Anzellotti, Gabriele Pairings between measures and bounded functions and compensated compactness Ann. Mat. Pura Appl. (4) 1983

[10] Barles, Guy, Georgelin, Christine A simple proof of convergence for an approximation scheme for computing motions by mean curvature SIAM J. Numer. Anal. 1995 484 500

[11] Barles, G., Soner, H. M., Souganidis, P. E. Front propagation and phase field theory SIAM J. Control Optim. 1993 439 469

[12] Barles, Guy, Souganidis, Panagiotis E. A new approach to front propagation problems: theory and applications Arch. Rational Mech. Anal. 1998 237 296

[13] Bellettini, Giovanni, Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo Crystalline mean curvature flow of convex sets Arch. Ration. Mech. Anal. 2006 109 152

[14] Bellettini, Giovanni, Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo The volume preserving crystalline mean curvature flow of convex sets in ℝ^{ℕ} J. Math. Pures Appl. (9) 2009 499 527

[15] Bellettini, G., Novaga, M. Approximation and comparison for nonsmooth anisotropic motion by mean curvature in 𝑅^{𝑁} Math. Models Methods Appl. Sci. 2000 1 10

[16] Bellettini, G., Novaga, M., Paolini, M. On a crystalline variational problem. I. First variation and global 𝐿^{∞} regularity Arch. Ration. Mech. Anal. 2001 165 191

[17] Caselles, Vicent, Chambolle, Antonin Anisotropic curvature-driven flow of convex sets Nonlinear Anal. 2006 1547 1577

[18] Chambolle, Antonin An algorithm for mean curvature motion Interfaces Free Bound. 2004 195 218

[19] Chambolle, Antonin, Morini, Massimiliano, Novaga, Matteo, Ponsiglione, Marcello Generalized crystalline evolutions as limits of flows with smooth anisotropies Anal. PDE 2019 789 813

[20] Chambolle, Antonin, Morini, Massimiliano, Ponsiglione, Marcello Nonlocal curvature flows Arch. Ration. Mech. Anal. 2015 1263 1329

[21] Chambolle, Antonin, Morini, Massimiliano, Ponsiglione, Marcello Existence and uniqueness for a crystalline mean curvature flow Comm. Pure Appl. Math. 2017 1084 1114

[22] Chambolle, Antonin, Novaga, Matteo Approximation of the anisotropic mean curvature flow Math. Models Methods Appl. Sci. 2007 833 844

[23] Chambolle, A., Novaga, M. Implicit time discretization of the mean curvature flow with a discontinuous forcing term Interfaces Free Bound. 2008 283 300

[24] Chambolle, Antonin, Novaga, Matteo Existence and uniqueness for planar anisotropic and crystalline curvature flow 2015 87 113

[25] Chen, Yun Gang, Giga, Yoshikazu, Goto, Shun’Ichi Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations J. Differential Geom. 1991 749 786

[26] Ecker, Klaus, Huisken, Gerhard Mean curvature evolution of entire graphs Ann. of Math. (2) 1989 453 471

[27] Evans, L. C., Soner, H. M., Souganidis, P. E. Phase transitions and generalized motion by mean curvature Comm. Pure Appl. Math. 1992 1097 1123

[28] Evans, L. C., Spruck, J. Motion of level sets by mean curvature. I J. Differential Geom. 1991 635 681

[29] Evans, L. C., Spruck, J. Motion of level sets by mean curvature. II Trans. Amer. Math. Soc. 1992 321 332

[30] Evans, L. C., Spruck, J. Motion of level sets by mean curvature. III J. Geom. Anal. 1992 121 150

[31] Fonseca, Irene, Mã¼Ller, Stefan A uniqueness proof for the Wulff theorem Proc. Roy. Soc. Edinburgh Sect. A 1991 125 136

[32] Giga, Mi-Ho, Giga, Yoshikazu Evolving graphs by singular weighted curvature Arch. Rational Mech. Anal. 1998 117 198

[33] Giga, Mi-Ho, Giga, Yoshikazu Generalized motion by nonlocal curvature in the plane Arch. Ration. Mech. Anal. 2001 295 333

[34] Giga, Mi-Ho, Giga, Yoshikazu, Poå¾Ã¡R, Norbert Periodic total variation flow of non-divergence type in ℝⁿ J. Math. Pures Appl. (9) 2014 203 233

[35] Giga, Y., Goto, S., Ishii, H., Sato, M.-H. Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains Indiana Univ. Math. J. 1991 443 470

[36] Giga, Yoshikazu Surface evolution equations 2006

[37] Giga, Yoshikazu, Gurtin, Morton E. A comparison theorem for crystalline evolution in the plane Quart. Appl. Math. 1996 727 737

[38] Giga, Yoshikazu, Gurtin, Morton E., Matias, Josã© On the dynamics of crystalline motions Japan J. Indust. Appl. Math. 1998 7 50

[39] Giga, Yoshikazu, Ohtsuka, Takeshi, Schã¤Tzle, Reiner On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations Interfaces Free Bound. 2006 317 348

[40] Giga, Yoshikazu, Poå¾Ã¡R, Norbert A level set crystalline mean curvature flow of surfaces Adv. Differential Equations 2016 631 698

[41] Giga, Yoshikazu, Poå¾Ã¡R, Norbert Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow Comm. Pure Appl. Math. 2018 1461 1491

[42] Gurtin, Morton E. Thermomechanics of evolving phase boundaries in the plane 1993

[43] Luckhaus, Stephan, Sturzenhecker, Thomas Implicit time discretization for the mean curvature flow equation Calc. Var. Partial Differential Equations 1995 253 271

[44] Osher, Stanley, Sethian, James A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49

[45] Soner, Halil Mete Motion of a set by the curvature of its boundary J. Differential Equations 1993 313 372

[46] Taylor, Jean E. Crystalline variational problems Bull. Amer. Math. Soc. 1978 568 588

[47] Taylor, Jean E. Motion of curves by crystalline curvature, including triple junctions and boundary points 1993 417 438

Cité par Sources :