Voir la notice de l'article provenant de la source American Mathematical Society
Chambolle, Antonin 1 ; Morini, Massimiliano 2 ; Novaga, Matteo 3 ; Ponsiglione, Marcello 4
@article{10_1090_jams_919,
author = {Chambolle, Antonin and Morini, Massimiliano and Novaga, Matteo and Ponsiglione, Marcello},
title = {Existence and uniqueness for anisotropic and crystalline mean curvature flows},
journal = {Journal of the American Mathematical Society},
pages = {779--824},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2019},
doi = {10.1090/jams/919},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/919/}
}
TY - JOUR AU - Chambolle, Antonin AU - Morini, Massimiliano AU - Novaga, Matteo AU - Ponsiglione, Marcello TI - Existence and uniqueness for anisotropic and crystalline mean curvature flows JO - Journal of the American Mathematical Society PY - 2019 SP - 779 EP - 824 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/919/ DO - 10.1090/jams/919 ID - 10_1090_jams_919 ER -
%0 Journal Article %A Chambolle, Antonin %A Morini, Massimiliano %A Novaga, Matteo %A Ponsiglione, Marcello %T Existence and uniqueness for anisotropic and crystalline mean curvature flows %J Journal of the American Mathematical Society %D 2019 %P 779-824 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/919/ %R 10.1090/jams/919 %F 10_1090_jams_919
Chambolle, Antonin; Morini, Massimiliano; Novaga, Matteo; Ponsiglione, Marcello. Existence and uniqueness for anisotropic and crystalline mean curvature flows. Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 779-824. doi: 10.1090/jams/919
[1] , , Mean curvature flow with obstacles Ann. Inst. H. Poincaré C Anal. Non Linéaire 2012 667 681
[2] , Flat flow is motion by crystalline curvature for curves with crystalline energies J. Differential Geom. 1995 1 22
[3] , , Curvature-driven flows: a variational approach SIAM J. Control Optim. 1993 387 438
[4] Geometric evolution problems, distance function and viscosity solutions 2000 5 93
[5] , A general chain rule for distributional derivatives Proc. Amer. Math. Soc. 1990 691 702
[6] , Level set approach to mean curvature flow in arbitrary codimension J. Differential Geom. 1996 693 737
[7] , Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface Arch. Rational Mech. Anal. 1989 323 391
[8] , , A computed example of nonuniqueness of mean curvature flow in ð³ Comm. Partial Differential Equations 1995 1937 1958
[9] Pairings between measures and bounded functions and compensated compactness Ann. Mat. Pura Appl. (4) 1983
[10] , A simple proof of convergence for an approximation scheme for computing motions by mean curvature SIAM J. Numer. Anal. 1995 484 500
[11] , , Front propagation and phase field theory SIAM J. Control Optim. 1993 439 469
[12] , A new approach to front propagation problems: theory and applications Arch. Rational Mech. Anal. 1998 237 296
[13] , , , Crystalline mean curvature flow of convex sets Arch. Ration. Mech. Anal. 2006 109 152
[14] , , , The volume preserving crystalline mean curvature flow of convex sets in â^{â} J. Math. Pures Appl. (9) 2009 499 527
[15] , Approximation and comparison for nonsmooth anisotropic motion by mean curvature in ð ^{ð} Math. Models Methods Appl. Sci. 2000 1 10
[16] , , On a crystalline variational problem. I. First variation and global ð¿^{â} regularity Arch. Ration. Mech. Anal. 2001 165 191
[17] , Anisotropic curvature-driven flow of convex sets Nonlinear Anal. 2006 1547 1577
[18] An algorithm for mean curvature motion Interfaces Free Bound. 2004 195 218
[19] , , , Generalized crystalline evolutions as limits of flows with smooth anisotropies Anal. PDE 2019 789 813
[20] , , Nonlocal curvature flows Arch. Ration. Mech. Anal. 2015 1263 1329
[21] , , Existence and uniqueness for a crystalline mean curvature flow Comm. Pure Appl. Math. 2017 1084 1114
[22] , Approximation of the anisotropic mean curvature flow Math. Models Methods Appl. Sci. 2007 833 844
[23] , Implicit time discretization of the mean curvature flow with a discontinuous forcing term Interfaces Free Bound. 2008 283 300
[24] , Existence and uniqueness for planar anisotropic and crystalline curvature flow 2015 87 113
[25] , , Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations J. Differential Geom. 1991 749 786
[26] , Mean curvature evolution of entire graphs Ann. of Math. (2) 1989 453 471
[27] , , Phase transitions and generalized motion by mean curvature Comm. Pure Appl. Math. 1992 1097 1123
[28] , Motion of level sets by mean curvature. I J. Differential Geom. 1991 635 681
[29] , Motion of level sets by mean curvature. II Trans. Amer. Math. Soc. 1992 321 332
[30] , Motion of level sets by mean curvature. III J. Geom. Anal. 1992 121 150
[31] , A uniqueness proof for the Wulff theorem Proc. Roy. Soc. Edinburgh Sect. A 1991 125 136
[32] , Evolving graphs by singular weighted curvature Arch. Rational Mech. Anal. 1998 117 198
[33] , Generalized motion by nonlocal curvature in the plane Arch. Ration. Mech. Anal. 2001 295 333
[34] , , Periodic total variation flow of non-divergence type in ââ¿ J. Math. Pures Appl. (9) 2014 203 233
[35] , , , Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains Indiana Univ. Math. J. 1991 443 470
[36] Surface evolution equations 2006
[37] , A comparison theorem for crystalline evolution in the plane Quart. Appl. Math. 1996 727 737
[38] , , On the dynamics of crystalline motions Japan J. Indust. Appl. Math. 1998 7 50
[39] , , On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations Interfaces Free Bound. 2006 317 348
[40] , A level set crystalline mean curvature flow of surfaces Adv. Differential Equations 2016 631 698
[41] , Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow Comm. Pure Appl. Math. 2018 1461 1491
[42] Thermomechanics of evolving phase boundaries in the plane 1993
[43] , Implicit time discretization for the mean curvature flow equation Calc. Var. Partial Differential Equations 1995 253 271
[44] , Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49
[45] Motion of a set by the curvature of its boundary J. Differential Equations 1993 313 372
[46] Crystalline variational problems Bull. Amer. Math. Soc. 1978 568 588
[47] Motion of curves by crystalline curvature, including triple junctions and boundary points 1993 417 438
Cité par Sources :