On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow
Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 491-562

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a locally finite irreducible affine building of dimension $\geq 2$, and let $\Gamma \leq \operatorname {Aut}(X)$ be a discrete group acting cocompactly. The goal of this paper is to address the following question: When is $\Gamma$ linear? More generally, when does $\Gamma$ admit a finite-dimensional representation with infinite image over a commutative unital ring? If $X$ is the Bruhat–Tits building of a simple algebraic group over a local field and if $\Gamma$ is an arithmetic lattice, then $\Gamma$ is clearly linear. We prove that if $X$ is of type $\widetilde {A}_2$, then the converse holds. In particular, cocompact lattices in exotic $\widetilde {A}_2$-buildings are nonlinear. As an application, we obtain the first infinite family of lattices in exotic $\widetilde {A}_2$-buildings of arbitrarily large thickness, providing a partial answer to a question of W. Kantor from 1986. We also show that if $X$ is Bruhat–Tits of arbitrary type, then the linearity of $\Gamma$ implies that $\Gamma$ is virtually contained in the linear part of the automorphism group of $X$; in particular, $\Gamma$ is an arithmetic lattice. The proofs are based on the machinery of algebraic representations of ergodic systems recently developed by U. Bader and A. Furman. The implementation of that tool in the present context requires the geometric construction of a suitable ergodic $\Gamma$-space attached to the the building $X$, which we call the singular Cartan flow.
DOI : 10.1090/jams/914

Bader, Uri 1 ; Caprace, Pierre-Emmanuel 2 ; Lécureux, Jean 3

1 Department of Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
2 UCLouvain, IRMP, Chemin du Cyclotron 2, Box L7.01.02, 1348 Louvain-la-Neuve, Belgium
3 Département de Mathématiques, Bâtiment 307, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay, France
@article{10_1090_jams_914,
     author = {Bader, Uri and Caprace, Pierre-Emmanuel and L\~A{\textcopyright}cureux, Jean},
     title = {On the linearity of lattices in affine buildings and ergodicity of the singular {Cartan} flow},
     journal = {Journal of the American Mathematical Society},
     pages = {491--562},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2019},
     doi = {10.1090/jams/914},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/914/}
}
TY  - JOUR
AU  - Bader, Uri
AU  - Caprace, Pierre-Emmanuel
AU  - Lécureux, Jean
TI  - On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 491
EP  - 562
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/914/
DO  - 10.1090/jams/914
ID  - 10_1090_jams_914
ER  - 
%0 Journal Article
%A Bader, Uri
%A Caprace, Pierre-Emmanuel
%A Lécureux, Jean
%T On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow
%J Journal of the American Mathematical Society
%D 2019
%P 491-562
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/914/
%R 10.1090/jams/914
%F 10_1090_jams_914
Bader, Uri; Caprace, Pierre-Emmanuel; Lécureux, Jean. On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 491-562. doi: 10.1090/jams/914

[1] Abã©Rt, Miklã³S, Nikolov, Nikolay Rank gradient, cost of groups and the rank versus Heegaard genus problem J. Eur. Math. Soc. (JEMS) 2012 1657 1677

[2] Abramenko, Peter, Brown, Kenneth S. Buildings 2008

[3] Anantharaman-Delaroche, C., Renault, J. Amenable groupoids 2000 196

[4] Bader, Uri, Duchesne, Bruno, Lã©Cureux, Jean Almost algebraic actions of algebraic groups and applications to algebraic representations Groups Geom. Dyn. 2017 705 738

[5] Bader, Uri, Furman, Alex Algebraic representations of ergodic actions and super-rigidity Preprint 2013

[6] Baggett, L. W., Ramsay, Arlan A functional analytic proof of a selection lemma Canadian J. Math. 1980 441 448

[7] Barrã©, Sylvain Immeubles de Tits triangulaires exotiques Ann. Fac. Sci. Toulouse Math. (6) 2000 575 603

[8] Barrã©, Sylvain, Pichot, Mikaã«L Sur les immeubles triangulaires et leurs automorphismes Geom. Dedicata 2007 71 91

[9] Bekka, Bachir, De La Harpe, Pierre, Valette, Alain Kazhdan’s property (T) 2008

[10] Bernå¡Teä­N, I. N., Zelevinskiä­, A. V. Representations of the group 𝐺𝐿(𝑛,𝐹), where 𝐹 is a local non-Archimedean field Uspehi Mat. Nauk 1976 5 70

[11] Borel, Armand Linear algebraic groups 1991

[12] Borel, Armand, Tits, Jacques Groupes réductifs Inst. Hautes Études Sci. Publ. Math. 1965 55 150

[13] Borel, Armand, Tits, Jacques Homomorphismes “abstraits” de groupes algébriques simples Ann. of Math. (2) 1973 499 571

[14] Breuillard, E., Gelander, T. A topological Tits alternative Ann. of Math. (2) 2007 427 474

[15] Burger, Marc, Mozes, Shahar Groups acting on trees: from local to global structure Inst. Hautes Études Sci. Publ. Math. 2000

[16] Burger, Marc, Mozes, Shahar Lattices in product of trees Inst. Hautes Études Sci. Publ. Math. 2000

[17] Cameron, Peter J. Projective and polar spaces [1992]

[18] Camina, Rachel Subgroups of the Nottingham group J. Algebra 1997 101 113

[19] Caprace, Pierre-Emmanuel A sixteen-relator presentation of an infinite hyperbolic Kazhdan group Preprint, arXiv:1708.09772, 2017

[20] Caprace, Pierre-Emmanuel, De Medts, Tom Simple locally compact groups acting on trees and their germs of automorphisms Transform. Groups 2011 375 411

[21] Caprace, Pierre-Emmanuel, De Medts, Tom Trees, contraction groups, and Moufang sets Duke Math. J. 2013 2413 2449

[22] Caprace, Pierre-Emmanuel, Monod, Nicolas Fixed points and amenability in non-positive curvature Math. Ann. 2013 1303 1337

[23] Caprace, Pierre-Emmanuel, Monod, Nicolas An indiscrete Bieberbach theorem: from amenable 𝐶𝐴𝑇(0) groups to Tits buildings J. Éc. polytech. Math. 2015 333 383

[24] Caprace, Pierre-Emmanuel, Reid, Colin D., Willis, George A. Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups Forum Math. Sigma 2017

[25] Caprace, Pierre-Emmanuel, Stulemeijer, Thierry Totally disconnected locally compact groups with a linear open subgroup Int. Math. Res. Not. IMRN 2015 13800 13829

[26] Cartwright, Donald I. Harmonic functions on buildings of type ̃𝐴_{𝑛} 1999 104 138

[27] Cartwright, Donald I., Mantero, Anna Maria, Steger, Tim, Zappa, Anna Groups acting simply transitively on the vertices of a building of type 𝐴̃₂. I Geom. Dedicata 1993 143 166

[28] Cartwright, Donald I., Må‚Otkowski, Wojciech Harmonic analysis for groups acting on triangle buildings J. Austral. Math. Soc. Ser. A 1994 345 383

[29] Charney, Ruth, Lytchak, Alexander Metric characterizations of spherical and Euclidean buildings Geom. Topol. 2001 521 550

[30] Conrad, Brian Reductive group schemes 2014 93 444

[31] Cornulier, Yves Aspects de la géométrie des groupes 2014

[32] Coudã¨Ne, Yves Sur l’ergodicité du flot géodésique en courbure négative ou nulle Enseign. Math. (2) 2011 117 153

[33] Dembowski, P. Finite geometries 1968

[34] Eisenbud, David Commutative algebra 1995

[35] Essert, Jan A geometric construction of panel-regular lattices for buildings of types 𝐴̃₂ and 𝐶̃₂ Algebr. Geom. Topol. 2013 1531 1578

[36] Farb, Benson, Mozes, Shahar, Thomas, Anne Lattices in trees and higher dimensional subcomplexes

[37] Garrett, Paul Buildings and classical groups 1997

[38] Glasner, Eli, Weiss, Benjamin Weak mixing properties for non-singular actions Ergodic Theory Dynam. Systems 2016 2203 2217

[39] Greenleaf, Frederick P. Ergodic theorems and the construction of summing sequences in amenable locally compact groups Comm. Pure Appl. Math. 1973 29 46

[40] Grã¼Ninger, Matthias A new proof for the uniqueness of Lyons’ simple group Innov. Incidence Geom. 2010 35 67

[41] Hopf, Eberhard Fuchsian groups and ergodic theory Trans. Amer. Math. Soc. 1936 299 314

[42] Howe, Roger E., Moore, Calvin C. Asymptotic properties of unitary representations J. Functional Analysis 1979 72 96

[43] Jacobson, Nathan Basic algebra. II 1980

[44] Kantor, William M. Some geometries that are almost buildings European J. Combin. 1981 239 247

[45] Kantor, William M. Generalized polygons, SCABs and GABs 1986 79 158

[46] Knarr, Norbert Projectivities of generalized polygons Ars Combin. 1988 265 275

[47] Kã¶Hler, Peter, Meixner, Thomas, Wester, Michael The affine building of type 𝐴̃₂ over a local field of characteristic two Arch. Math. (Basel) 1984 400 407

[48] Kã¶Hler, Peter, Meixner, Thomas, Wester, Michael Triangle groups Comm. Algebra 1984 1595 1625

[49] Lã©Cureux, Jean Amenability of actions on the boundary of a building Int. Math. Res. Not. IMRN 2010 3265 3302

[50] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[51] Pansu, Pierre Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles Bull. Soc. Math. France 1998 107 139

[52] Parkinson, James Buildings and Hecke algebras J. Algebra 2006 1 49

[53] Parkinson, James Spherical harmonic analysis on affine buildings Math. Z. 2006 571 606

[54] Platonov, V. P. A certain problem for finitely generated groups Dokl. Akad. Nauk BSSR 1968 492 494

[55] Prasad, Gopal Strong approximation for semi-simple groups over function fields Ann. of Math. (2) 1977 553 572

[56] Radu, Nicolas A classification theorem for boundary 2-transitive automorphism groups of trees Invent. Math. 2017 1 60

[57] Radu, Nicolas A lattice in a residually non-Desarguesian 𝐴̃₂-building Bull. Lond. Math. Soc. 2017 274 290

[58] Radu, Nicolas A homogeneous 𝐴̃₂-building with a non-discrete automorphism group is Bruhat–Tits Geom. Dedicata (to appear) 2018

[59] Robertson, Guyan, Steger, Tim 𝐶*-algebras arising from group actions on the boundary of a triangle building Proc. London Math. Soc. (3) 1996 613 637

[60] Ronan, M. A. Triangle geometries J. Combin. Theory Ser. A 1984 294 319

[61] Ronan, M. A. A construction of buildings with no rank 3 residues of spherical type 1986 242 248

[62] Ronan, Mark Lectures on buildings 2009

[63] Rosendal, Christian Automatic continuity of group homomorphisms Bull. Symbolic Logic 2009 184 214

[64] Schleiermacher, Adolf Reguläre Normalteiler in der Gruppe der Projektivitäten bei projektiven und affinen Ebenen Math. Z. 1970 313 320

[65] Singer, James A theorem in finite projective geometry and some applications to number theory Trans. Amer. Math. Soc. 1938 377 385

[66] Springer, T. A. Linear algebraic groups 1998

[67] Struyve, Koen Rigidity at infinity of trees and Euclidean buildings Transform. Groups 2016 265 273

[68] Stulemeijer, Thierry Semi-simple algebraic groups from a topological group perspective 2017

[69] Tits, J. A “theorem of Lie-Kolchin” for trees 1977 377 388

[70] Tits, Jacques Sur le groupe des automorphismes d’un arbre 1970 188 211

[71] Tits, Jacques Buildings of spherical type and finite BN-pairs 1974

[72] Tits, J. Reductive groups over local fields 1979 29 69

[73] Tits, Jacques Théorie des groupes Ann. Collège France 1983/84

[74] Tits, Jacques Théorie des groupes Ann. Collège France 1984/85

[75] Tits, Jacques Buildings and group amalgamations 1986 110 127

[76] Tits, Jacques Spheres of radius 2 in triangle buildings. I 1990 17 28

[77] Van Maldeghem, H. Nonclassical triangle buildings Geom. Dedicata 1987 123 206

[78] Venkataramana, T. N. On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic Invent. Math. 1988 255 306

[79] Weiss, Richard M. The structure of spherical buildings 2003

[80] Weiss, Richard M. The structure of affine buildings 2009

[81] Witzel, Stefan On panel-regular 𝐴̃₂ lattices Geom. Dedicata 2017 85 135

[82] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :