Voir la notice de l'article provenant de la source American Mathematical Society
Bader, Uri 1 ; Caprace, Pierre-Emmanuel 2 ; Lécureux, Jean 3
@article{10_1090_jams_914,
author = {Bader, Uri and Caprace, Pierre-Emmanuel and L\~A{\textcopyright}cureux, Jean},
title = {On the linearity of lattices in affine buildings and ergodicity of the singular {Cartan} flow},
journal = {Journal of the American Mathematical Society},
pages = {491--562},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2019},
doi = {10.1090/jams/914},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/914/}
}
TY - JOUR AU - Bader, Uri AU - Caprace, Pierre-Emmanuel AU - Lécureux, Jean TI - On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow JO - Journal of the American Mathematical Society PY - 2019 SP - 491 EP - 562 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/914/ DO - 10.1090/jams/914 ID - 10_1090_jams_914 ER -
%0 Journal Article %A Bader, Uri %A Caprace, Pierre-Emmanuel %A Lécureux, Jean %T On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow %J Journal of the American Mathematical Society %D 2019 %P 491-562 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/914/ %R 10.1090/jams/914 %F 10_1090_jams_914
Bader, Uri; Caprace, Pierre-Emmanuel; Lécureux, Jean. On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 491-562. doi: 10.1090/jams/914
[1] , Rank gradient, cost of groups and the rank versus Heegaard genus problem J. Eur. Math. Soc. (JEMS) 2012 1657 1677
[2] , Buildings 2008
[3] , Amenable groupoids 2000 196
[4] , , Almost algebraic actions of algebraic groups and applications to algebraic representations Groups Geom. Dyn. 2017 705 738
[5] , Algebraic representations of ergodic actions and super-rigidity Preprint 2013
[6] , A functional analytic proof of a selection lemma Canadian J. Math. 1980 441 448
[7] Immeubles de Tits triangulaires exotiques Ann. Fac. Sci. Toulouse Math. (6) 2000 575 603
[8] , Sur les immeubles triangulaires et leurs automorphismes Geom. Dedicata 2007 71 91
[9] , , Kazhdanâs property (T) 2008
[10] , Representations of the group ðºð¿(ð,ð¹), where ð¹ is a local non-Archimedean field Uspehi Mat. Nauk 1976 5 70
[11] Linear algebraic groups 1991
[12] , Groupes réductifs Inst. Hautes Ãtudes Sci. Publ. Math. 1965 55 150
[13] , Homomorphismes âabstraitsâ de groupes algébriques simples Ann. of Math. (2) 1973 499 571
[14] , A topological Tits alternative Ann. of Math. (2) 2007 427 474
[15] , Groups acting on trees: from local to global structure Inst. Hautes Ãtudes Sci. Publ. Math. 2000
[16] , Lattices in product of trees Inst. Hautes Ãtudes Sci. Publ. Math. 2000
[17] Projective and polar spaces [1992]
[18] Subgroups of the Nottingham group J. Algebra 1997 101 113
[19] A sixteen-relator presentation of an infinite hyperbolic Kazhdan group Preprint, arXiv:1708.09772, 2017
[20] , Simple locally compact groups acting on trees and their germs of automorphisms Transform. Groups 2011 375 411
[21] , Trees, contraction groups, and Moufang sets Duke Math. J. 2013 2413 2449
[22] , Fixed points and amenability in non-positive curvature Math. Ann. 2013 1303 1337
[23] , An indiscrete Bieberbach theorem: from amenable ð¶ð´ð(0) groups to Tits buildings J. Ãc. polytech. Math. 2015 333 383
[24] , , Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups Forum Math. Sigma 2017
[25] , Totally disconnected locally compact groups with a linear open subgroup Int. Math. Res. Not. IMRN 2015 13800 13829
[26] Harmonic functions on buildings of type Ìð´_{ð} 1999 104 138
[27] , , , Groups acting simply transitively on the vertices of a building of type ð´Ìâ. I Geom. Dedicata 1993 143 166
[28] , Harmonic analysis for groups acting on triangle buildings J. Austral. Math. Soc. Ser. A 1994 345 383
[29] , Metric characterizations of spherical and Euclidean buildings Geom. Topol. 2001 521 550
[30] Reductive group schemes 2014 93 444
[31] Aspects de la géométrie des groupes 2014
[32] Sur lâergodicité du flot géodésique en courbure négative ou nulle Enseign. Math. (2) 2011 117 153
[33] Finite geometries 1968
[34] Commutative algebra 1995
[35] A geometric construction of panel-regular lattices for buildings of types ð´Ìâ and ð¶Ìâ Algebr. Geom. Topol. 2013 1531 1578
[36] , , Lattices in trees and higher dimensional subcomplexes
[37] Buildings and classical groups 1997
[38] , Weak mixing properties for non-singular actions Ergodic Theory Dynam. Systems 2016 2203 2217
[39] Ergodic theorems and the construction of summing sequences in amenable locally compact groups Comm. Pure Appl. Math. 1973 29 46
[40] A new proof for the uniqueness of Lyonsâ simple group Innov. Incidence Geom. 2010 35 67
[41] Fuchsian groups and ergodic theory Trans. Amer. Math. Soc. 1936 299 314
[42] , Asymptotic properties of unitary representations J. Functional Analysis 1979 72 96
[43] Basic algebra. II 1980
[44] Some geometries that are almost buildings European J. Combin. 1981 239 247
[45] Generalized polygons, SCABs and GABs 1986 79 158
[46] Projectivities of generalized polygons Ars Combin. 1988 265 275
[47] , , The affine building of type ð´Ìâ over a local field of characteristic two Arch. Math. (Basel) 1984 400 407
[48] , , Triangle groups Comm. Algebra 1984 1595 1625
[49] Amenability of actions on the boundary of a building Int. Math. Res. Not. IMRN 2010 3265 3302
[50] Discrete subgroups of semisimple Lie groups 1991
[51] Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles Bull. Soc. Math. France 1998 107 139
[52] Buildings and Hecke algebras J. Algebra 2006 1 49
[53] Spherical harmonic analysis on affine buildings Math. Z. 2006 571 606
[54] A certain problem for finitely generated groups Dokl. Akad. Nauk BSSR 1968 492 494
[55] Strong approximation for semi-simple groups over function fields Ann. of Math. (2) 1977 553 572
[56] A classification theorem for boundary 2-transitive automorphism groups of trees Invent. Math. 2017 1 60
[57] A lattice in a residually non-Desarguesian ð´Ìâ-building Bull. Lond. Math. Soc. 2017 274 290
[58] A homogeneous ð´Ìâ-building with a non-discrete automorphism group is BruhatâTits Geom. Dedicata (to appear) 2018
[59] , ð¶*-algebras arising from group actions on the boundary of a triangle building Proc. London Math. Soc. (3) 1996 613 637
[60] Triangle geometries J. Combin. Theory Ser. A 1984 294 319
[61] A construction of buildings with no rank 3 residues of spherical type 1986 242 248
[62] Lectures on buildings 2009
[63] Automatic continuity of group homomorphisms Bull. Symbolic Logic 2009 184 214
[64] Reguläre Normalteiler in der Gruppe der Projektivitäten bei projektiven und affinen Ebenen Math. Z. 1970 313 320
[65] A theorem in finite projective geometry and some applications to number theory Trans. Amer. Math. Soc. 1938 377 385
[66] Linear algebraic groups 1998
[67] Rigidity at infinity of trees and Euclidean buildings Transform. Groups 2016 265 273
[68] Semi-simple algebraic groups from a topological group perspective 2017
[69] A âtheorem of Lie-Kolchinâ for trees 1977 377 388
[70] Sur le groupe des automorphismes dâun arbre 1970 188 211
[71] Buildings of spherical type and finite BN-pairs 1974
[72] Reductive groups over local fields 1979 29 69
[73] Théorie des groupes Ann. Collège France 1983/84
[74] Théorie des groupes Ann. Collège France 1984/85
[75] Buildings and group amalgamations 1986 110 127
[76] Spheres of radius 2 in triangle buildings. I 1990 17 28
[77] Nonclassical triangle buildings Geom. Dedicata 1987 123 206
[78] On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic Invent. Math. 1988 255 306
[79] The structure of spherical buildings 2003
[80] The structure of affine buildings 2009
[81] On panel-regular ð´Ìâ lattices Geom. Dedicata 2017 85 135
[82] Ergodic theory and semisimple groups 1984
Cité par Sources :