Exponential self-similar mixing by incompressible flows
Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 445-490

Voir la notice de l'article provenant de la source American Mathematical Society

We study the problem of the optimal mixing of a passive scalar under the action of an incompressible flow in two space dimensions. The scalar solves the continuity equation with a divergence-free velocity field, which satisfies a bound in the Sobolev space $W^{s,p}$, where $s \geq 0$ and $1\leq p\leq \infty$. The mixing properties are given in terms of a characteristic length scale, called the mixing scale. We consider two notions of mixing scale, one functional, expressed in terms of the homogeneous Sobolev norm $\dot H^{-1}$, the other geometric, related to rearrangements of sets. We study rates of decay in time of both scales under self-similar mixing. For the case $s=1$ and $1 \leq p \leq \infty$ (including the case of Lipschitz continuous velocities and the case of physical interest of enstrophy-constrained flows), we present examples of velocity fields and initial configurations for the scalars that saturate the exponential lower bound, established in previous works, on the time decay of both scales. We also present several consequences for the geometry of regular Lagrangian flows associated to Sobolev velocity fields.
DOI : 10.1090/jams/913

Alberti, Giovanni 1 ; Crippa, Gianluca 2 ; Mazzucato, Anna 3

1 Dipartimento di Matematica, Università di Pisa, largo Pontecorvo 5, I-56127 Pisa, Italy
2 Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
3 Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania, 16802
@article{10_1090_jams_913,
     author = {Alberti, Giovanni and Crippa, Gianluca and Mazzucato, Anna},
     title = {Exponential self-similar mixing by incompressible flows},
     journal = {Journal of the American Mathematical Society},
     pages = {445--490},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2019},
     doi = {10.1090/jams/913},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/913/}
}
TY  - JOUR
AU  - Alberti, Giovanni
AU  - Crippa, Gianluca
AU  - Mazzucato, Anna
TI  - Exponential self-similar mixing by incompressible flows
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 445
EP  - 490
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/913/
DO  - 10.1090/jams/913
ID  - 10_1090_jams_913
ER  - 
%0 Journal Article
%A Alberti, Giovanni
%A Crippa, Gianluca
%A Mazzucato, Anna
%T Exponential self-similar mixing by incompressible flows
%J Journal of the American Mathematical Society
%D 2019
%P 445-490
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/913/
%R 10.1090/jams/913
%F 10_1090_jams_913
Alberti, Giovanni; Crippa, Gianluca; Mazzucato, Anna. Exponential self-similar mixing by incompressible flows. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 445-490. doi: 10.1090/jams/913

[1] Alberti, Giovanni, Bianchini, Stefano, Crippa, Gianluca Structure of level sets and Sard-type properties of Lipschitz maps Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2013 863 902

[2] Alberti, Giovanni, Bianchini, Stefano, Crippa, Gianluca A uniqueness result for the continuity equation in two dimensions J. Eur. Math. Soc. (JEMS) 2014 201 234

[3] Alberti, Giovanni, Crippa, Gianluca, Mazzucato, Anna L. Exponential self-similar mixing and loss of regularity for continuity equations C. R. Math. Acad. Sci. Paris 2014 901 906

[4] Ambrosio, Luigi Transport equation and Cauchy problem for 𝐵𝑉 vector fields Invent. Math. 2004 227 260

[5] Ambrosio, Luigi, Crippa, Gianluca Continuity equations and ODE flows with non-smooth velocity Proc. Roy. Soc. Edinburgh Sect. A 2014 1191 1244

[6] Aref, Hassan Stirring by chaotic advection J. Fluid Mech. 1984 1 21

[7] Bahouri, Hajer, Chemin, Jean-Yves, Danchin, Raphaã«L Fourier analysis and nonlinear partial differential equations 2011

[8] Bedrossian, Jacob, Masmoudi, Nader, Vicol, Vlad Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow Arch. Ration. Mech. Anal. 2016 1087 1159

[9] Bergh, Jã¶Ran, Lã¶Fstrã¶M, Jã¶Rgen Interpolation spaces. An introduction 1976

[10] Boffetta, G., Celani, A., Cencini, M., Lacorata, G., Vulpiani, A. Nonasymptotic properties of transport and mixing Chaos 2000 50 60

[11] Bouchut, Franã§Ois, Crippa, Gianluca Lagrangian flows for vector fields with gradient given by a singular integral J. Hyperbolic Differ. Equ. 2013 235 282

[12] Bressan, Alberto A lemma and a conjecture on the cost of rearrangements Rend. Sem. Mat. Univ. Padova 2003 97 102

[13] Colombini, Ferruccio, Luo, Tao, Rauch, Jeffrey Nearly Lipschitzean divergence free transport propagates neither continuity nor BV regularity Commun. Math. Sci. 2004 207 212

[14] Constantin, P., Kiselev, A., Ryzhik, L., Zlatoå¡, A. Diffusion and mixing in fluid flow Ann. of Math. (2) 2008 643 674

[15] Crippa, Gianluca, De Lellis, Camillo Estimates and regularity results for the DiPerna-Lions flow J. Reine Angew. Math. 2008 15 46

[16] Crippa, Gianluca, Schulze, Christian Cellular mixing with bounded palenstrophy Math. Models Methods Appl. Sci. 2017 2297 2320

[17] Depauw, Nicolas Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan C. R. Math. Acad. Sci. Paris 2003 249 252

[18] Di Nezza, Eleonora, Palatucci, Giampiero, Valdinoci, Enrico Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 2012 521 573

[19] Diperna, R. J., Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces Invent. Math. 1989 511 547

[20] Foures, D. P. G., Caulfield, C. P., Schmid, P. J. Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number J. Fluid Mech. 2014 241 277

[21] Gotoh, Toshiyuki, Watanabe, Takeshi Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence Phys. D 2012 141 148

[22] Grafakos, Loukas Modern Fourier analysis 2014

[23] Iyer, Gautam, Kiselev, Alexander, Xu, Xiaoqian Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows Nonlinearity 2014 973 985

[24] Jabin, Pierre-Emmanuel Critical non-Sobolev regularity for continuity equations with rough velocity fields J. Differential Equations 2016 4739 4757

[25] Kiselev, Alexander, Xu, Xiaoqian Suppression of chemotactic explosion by mixing Arch. Ration. Mech. Anal. 2016 1077 1112

[26] Lã©Ger, Flavien A new approach to bounds on mixing Math. Models Methods Appl. Sci. 2018 829 849

[27] Lin, Zhi, Thiffeault, Jean-Luc, Doering, Charles R. Optimal stirring strategies for passive scalar mixing J. Fluid Mech. 2011 465 476

[28] Liu, Weijiu Mixing enhancement by optimal flow advection SIAM J. Control Optim. 2008 624 638

[29] Liverani, Carlangelo On contact Anosov flows Ann. of Math. (2) 2004 1275 1312

[30] Lunasin, Evelyn, Lin, Zhi, Novikov, Alexei, Mazzucato, Anna, Doering, Charles R. Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows J. Math. Phys. 2012

[31] Mathew, George, Meziä‡, Igor, Grivopoulos, Symeon, Vaidya, Umesh, Petzold, Linda Optimal control of mixing in Stokes fluid flows J. Fluid Mech. 2007 261 281

[32] Mathew, George, Meziä‡, Igor, Petzold, Linda A multiscale measure for mixing Phys. D 2005 23 46

[33] Ottino, J. M. The kinematics of mixing: stretching, chaos, and transport 1989

[34] Seis, Christian Maximal mixing by incompressible fluid flows Nonlinearity 2013 3279 3289

[35] Triebel, Hans Theory of function spaces 1983 284

[36] Yao, Yao, Zlatoå¡, Andrej Mixing and un-mixing by incompressible flows J. Eur. Math. Soc. (JEMS) 2017 1911 1948

Cité par Sources :