Voir la notice de l'article provenant de la source American Mathematical Society
Evans, Jonathan 1 ; Lekili, Yankı 2
@article{10_1090_jams_909,
     author = {Evans, Jonathan and Lekili, Yank\"A\ensuremath{\pm}},
     title = {Generating the {Fukaya} categories of {Hamiltonian} {\dh}{\textordmasculine}-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {119--162},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2019},
     doi = {10.1090/jams/909},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/909/}
}
                      
                      
                    TY - JOUR AU - Evans, Jonathan AU - Lekili, Yankı TI - Generating the Fukaya categories of Hamiltonian ðº-manifolds JO - Journal of the American Mathematical Society PY - 2019 SP - 119 EP - 162 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/909/ DO - 10.1090/jams/909 ID - 10_1090_jams_909 ER -
%0 Journal Article %A Evans, Jonathan %A Lekili, Yankı %T Generating the Fukaya categories of Hamiltonian ðº-manifolds %J Journal of the American Mathematical Society %D 2019 %P 119-162 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/909/ %R 10.1090/jams/909 %F 10_1090_jams_909
Evans, Jonathan; Lekili, Yankı. Generating the Fukaya categories of Hamiltonian ðº-manifolds. Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 119-162. doi: 10.1090/jams/909
[1] A geometric criterion for generating the Fukaya category Publ. Math. Inst. Hautes Ãtudes Sci. 2010 191 240
[2] A cotangent fibre generates the Fukaya category Adv. Math. 2011 894 939
[3] Nearby Lagrangians with vanishing Maslov class are homotopy equivalent Invent. Math. 2012 251 313
[4] On the wrapped Fukaya category and based loops J. Symplectic Geom. 2012 27 79
[5] , An open string analogue of Viterbo functoriality Geom. Topol. 2010 627 718
[6] , Homological mirror symmetry for the 4-torus Duke Math. J. 2010 373 440
[7] Infinite loop spaces 1978
[8] , Introduction to commutative algebra 1969
[9] , Gaps in Hochschild cohomology imply smoothness for commutative algebras Math. Res. Lett. 2005 789 804
[10] , Homogeneous Lagrangian submanifolds Comm. Anal. Geom. 2008 591 615
[11] , , Koszul duality patterns in representation theory J. Amer. Math. Soc. 1996 473 527
[12] , Rigidity and uniruling for Lagrangian submanifolds Geom. Topol. 2009 2881 2989
[13] , Lagrangian topology and enumerative geometry Geom. Topol. 2012 963 1052
[14] Sur lâhomologie et la cohomologie des groupes de Lie compacts connexes Amer. J. Math. 1954 273 342
[15] , Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds Asian J. Math. 2006 773 814
[16] Homotopy commutativity and the Moore spectral sequence Pacific J. Math. 1965 65 74
[17] , , , , Mirror symmetry and Fano manifolds 2013 285 300
[18] Floer homology on the universal cover, Audinâs conjecture and other constraints on Lagrangian submanifolds Comment. Math. Helv. 2012 433 462
[19] Strong convergence of the Eilenberg-Moore spectral sequence Topology 1974 255 265
[20] , Complete modules and torsion modules Amer. J. Math. 2002 199 220
[21] , Homology and fibrations. I. Coalgebras, cotensor product and its derived functors Comment. Math. Helv. 1966 199 236
[22] , Koszul duality patterns in Floer theory Geom. Topol. 2017 3313 3389
[23] , Floer cohomology of the Chiang Lagrangian Selecta Math. (N.S.) 2015 1361 1404
[24] , , , Antisymplectic involution and Floer cohomology Geom. Topol. 2017 1 106
[25] , , , Lagrangian intersection Floer theory: anomaly and obstruction. Part II 2009
[26] , , , Lagrangian Floer theory on compact toric manifolds. I Duke Math. J. 2010 23 174
[27] , , Exact Lagrangian submanifolds in simply-connected cotangent bundles Invent. Math. 2008 1 27
[28] , , The symplectic geometry of cotangent bundles from a categorical viewpoint 2009 1 26
[29] Fusion rings and geometry Comm. Math. Phys. 1991 381 411
[30] , The moment map revisited J. Differential Geom. 2005 137 162
[31] On the quantum homology of real Lagrangians in Fano toric manifolds Int. Math. Res. Not. IMRN 2013 3171 3220
[32] Ãber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen Ann. of Math. (2) 1941 22 52
[33] Symplectic topology of Lagrangian submanifolds of âââ¿ with intermediate minimal Maslov numbers Adv. Geom. 2017 247 264
[34] , , Lagrangian Floer homology of a pair of real forms in Hermitian symmetric spaces of compact type J. Math. Soc. Japan 2013 1135 1151
[35] Cohomology ð¶_{â}-algebra and rational homotopy type 2009 225 240
[36] Lie groups and products of spheres Proc. Amer. Math. Soc. 1965 1350 1356
[37] , Geometric composition in quilted Floer theory Adv. Math. 2013 1 23
[38] Cochains and homotopy type Publ. Math. Inst. Hautes Ãtudes Sci. 2006 213 246
[39] The multiplihedra in Lagrangian Floer theory 2008 180
[40] , , ð´_{â} functors for Lagrangian correspondences Selecta Math. (N.S.) 2018 1913 2002
[41] , Geometric realizations of the multiplihedra Compos. Math. 2010 1002 1028
[42] , ð½-holomorphic curves and symplectic topology 2004
[43] Homotopy theory of Lie groups 1995 951 991
[44] The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps J. Pure Appl. Algebra 1974 1 50
[45] , , Potential functions via toric degenerations Proc. Japan Acad. Ser. A Math. Sci. 2012 31 33
[46] , Floer cohomologies of non-torus fibers of the Gelfand-Cetlin system J. Symplectic Geom. 2016 1251 1293
[47] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I Comm. Pure Appl. Math. 1993 949 993
[48] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. II. (ð¶ðâ¿,ð ðâ¿) Comm. Pure Appl. Math. 1993 995 1012
[49] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. III. Arnolâ²d-Givental conjecture 1995 555 573
[50] , On the quantum homology algebra of toric Fano manifolds Selecta Math. (N.S.) 2009 121 149
[51] Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties Geom. Topol. 2016 1941 2052
[52] , Bott-type symplectic Floer cohomology and its multiplication structures Math. Res. Lett. 1995 203 219
[53] Fukaya categories and Picard-Lefschetz theory 2008
[54] Homological mirror symmetry for the quartic surface Mem. Amer. Math. Soc. 2015
[55] Groupes dâhomotopie et classes de groupes abéliens Ann. of Math. (2) 1953 258 294
[56] On the Fukaya category of a Fano hypersurface in projective space Publ. Math. Inst. Hautes Ãtudes Sci. 2016 165 317
[57] Floer cohomology and pencils of quadrics Invent. Math. 2012 149 250
[58] On the homotopy-commutativity of groups and loop spaces Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 1960/61 257 269
[59] Gauge theory and mirror symmetry 2014 1309 1332
[60] The closed-open string map for ð¹-invariant Lagrangians Algebr. Geom. Topol. 2018 15 68
[61] , Pseudoholomorphic quilts J. Symplectic Geom. 2015 849 904
[62] , Functoriality for Lagrangian correspondences in Floer theory Quantum Topol. 2010 129 170
[63] , Floer cohomology and geometric composition of Lagrangian correspondences Adv. Math. 2012 177 228
[64] , Quilted Floer trajectories with constant components: corrigendum to the article âQuilted Floer cohomologyâ [MR2602853] Geom. Topol. 2012 127 154
[65] Symplectic geometry Bull. Amer. Math. Soc. (N.S.) 1981 1 13
Cité par Sources :
