Voir la notice de l'article provenant de la source American Mathematical Society
Bürgisser, Peter 1 ; Ikenmeyer, Christian 2 ; Panova, Greta 3
@article{10_1090_jams_908,
     author = {B\~A{\textonequarter}rgisser, Peter and Ikenmeyer, Christian and Panova, Greta},
     title = {No occurrence obstructions in geometric complexity theory},
     journal = {Journal of the American Mathematical Society},
     pages = {163--193},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2019},
     doi = {10.1090/jams/908},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/908/}
}
                      
                      
                    TY - JOUR AU - Bürgisser, Peter AU - Ikenmeyer, Christian AU - Panova, Greta TI - No occurrence obstructions in geometric complexity theory JO - Journal of the American Mathematical Society PY - 2019 SP - 163 EP - 193 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/908/ DO - 10.1090/jams/908 ID - 10_1090_jams_908 ER -
%0 Journal Article %A Bürgisser, Peter %A Ikenmeyer, Christian %A Panova, Greta %T No occurrence obstructions in geometric complexity theory %J Journal of the American Mathematical Society %D 2019 %P 163-193 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/908/ %R 10.1090/jams/908 %F 10_1090_jams_908
Bürgisser, Peter; Ikenmeyer, Christian; Panova, Greta. No occurrence obstructions in geometric complexity theory. Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 163-193. doi: 10.1090/jams/908
[1] , Colorings and orientations of graphs Combinatorica 1992 125 134
[2] , , A lower bound for the determinantal complexity of a hypersurface Found. Comput. Math. 2017 829 836
[3] Completeness and reduction in algebraic complexity theory 2000
[4] Cookâs versus Valiantâs hypothesis Theoret. Comput. Sci. 2000 71 88
[5] The complexity of factors of multivariate polynomials Found. Comput. Math. 2004 369 396
[6] , , Even partitions in plethysms J. Algebra 2011 322 329
[7] , , Nonvanishing of Kronecker coefficients for rectangular shapes Adv. Math. 2011 2082 2091
[8] , , Permanent versus determinant: not via saturations Proc. Amer. Math. Soc. 2017 1247 1258
[9] , Fundamental invariants of orbit closures J. Algebra 2017 390 434
[10] , , No occurrence obstructions in geometric complexity theory 2016 386 395
[11] , , , An overview of mathematical issues arising in the geometric complexity theory approach to ððâ ððð SIAM J. Comput. 2011 1179 1209
[12] , , Quadratic lower bound for permanent vs. determinant in any characteristic Comput. Complexity 2010 37 56
[13] , Plethysm and vertex operators Adv. in Appl. Math. 1992 390 403
[14] The collected mathematical papers. Volume 2 2009
[15] , , Computing multiplicities of Lie group representations 2012 639 648
[16] Lectures on invariant theory 2003
[17] , Representation theory 1991
[18] , , Geometric complexity theory and matrix powering Differential Geom. Appl. 2017 106 127
[19] (ðºð¿_{ð},ðºð¿â)-duality and symmetric plethysm Proc. Indian Acad. Sci. Math. Sci. 1987
[20] , The boundary of the orbit of the 3-by-3 determinant polynomial C. R. Math. Acad. Sci. Paris 2016 931 935
[21] , Binary determinantal complexity Linear Algebra Appl. 2016 559 573
[22] , , On vanishing of Kronecker coefficients Comput. Complexity 2017 949 992
[23] , Rectangular Kronecker coefficients and plethysms in geometric complexity theory Adv. Math. 2017 40 66
[24] , Padded polynomials, their cousins, and geometric complexity theory Comm. Algebra 2014 2171 2180
[25] A study of the representations supported by the orbit closure of the determinant Compos. Math. 2015 292 312
[26] , , Hypersurfaces with degenerate duals and the geometric complexity theory program Comment. Math. Helv. 2013 469 484
[27] , On the ranks and border ranks of symmetric tensors Found. Comput. Math. 2010 339 366
[28] , Determining representations from invariant dimensions Invent. Math. 1990 377 398
[29] Symmetric functions and Hall polynomials 1995
[30] , Characterizing Valiantâs algebraic complexity classes J. Complexity 2008 16 38
[31] Gaussian maps and plethysm 1998 91 117
[32] , A quadratic bound for the determinant and permanent problem Int. Math. Res. Not. 2004 4241 4253
[33] On P vs. NP and geometric complexity theory J. ACM 2011
[34] , Geometric complexity theory. I. An approach to the P vs. NP and related problems SIAM J. Comput. 2001 496 526
[35] , Geometric complexity theory. II. Towards explicit obstructions for embeddings among class varieties SIAM J. Comput. 2008 1175 1206
[36] Algebraic geometry. I 1995
[37] The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group Amer. J. Math. 1938 761 784
[38] Multilinear algebra 1984
[39] Positivity problems and conjectures in algebraic combinatorics 2000 295 319
[40] Completeness classes in algebra 1979 249 261
[41] The complexity of computing the permanent Theoret. Comput. Sci. 1979 189 201
[42] Reducibility by algebraic projections 1982 365 380
[43] Some observations on plethysms J. Algebra 1990 103 114
Cité par Sources :
