A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs
Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 311-349

Voir la notice de l'article provenant de la source American Mathematical Society

This paper concerns the vertex reinforced jump process (VRJP), the edge reinforced random walk (ERRW), and their relation to a random Schrödinger operator. On infinite graphs, we define a 1-dependent random potential $\beta$ extending that defined by Sabot, Tarrès, and Zeng on finite graphs, and consider its associated random Schrödinger operator $H_\beta$. We construct a random function $\psi$ as a limit of martingales, such that $\psi =0$ when the VRJP is recurrent, and $\psi$ is a positive generalized eigenfunction of the random Schrödinger operator with eigenvalue $0$, when the VRJP is transient. Then we prove a representation of the VRJP on infinite graphs as a mixture of Markov jump processes involving the function $\psi$, the Green function of the random Schrödinger operator, and an independent Gamma random variable. On ${\Bbb Z}^d$, we deduce from this representation a zero-one law for recurrence or transience of the VRJP and the ERRW, and a functional central limit theorem for the VRJP and the ERRW at weak reinforcement in dimension $d\ge 3$, using estimates of Disertori, Sabot, and Tarrès and of Disertori, Spencer, and Zimbauer. Finally, we deduce recurrence of the ERRW in dimension $d=2$ for any initial constant weights (using the estimates of Merkl and Rolles), thus giving a full answer to the question raised by Diaconis. We also raise some questions on the links between recurrence/transience of the VRJP and localization/delocalization of the random Schrödinger operator $H_\beta$.
DOI : 10.1090/jams/906

Sabot, Christophe 1 ; Zeng, Xiaolin 2

1 Université de Lyon, Université Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
2 108 Schreiber Building, School of Mathematics, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv 69978, Israel
@article{10_1090_jams_906,
     author = {Sabot, Christophe and Zeng, Xiaolin},
     title = {A random {Schr\~A{\textparagraph}dinger} operator associated with the {Vertex} {Reinforced} {Jump} {Process} on infinite graphs},
     journal = {Journal of the American Mathematical Society},
     pages = {311--349},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2019},
     doi = {10.1090/jams/906},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/906/}
}
TY  - JOUR
AU  - Sabot, Christophe
AU  - Zeng, Xiaolin
TI  - A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 311
EP  - 349
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/906/
DO  - 10.1090/jams/906
ID  - 10_1090_jams_906
ER  - 
%0 Journal Article
%A Sabot, Christophe
%A Zeng, Xiaolin
%T A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs
%J Journal of the American Mathematical Society
%D 2019
%P 311-349
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/906/
%R 10.1090/jams/906
%F 10_1090_jams_906
Sabot, Christophe; Zeng, Xiaolin. A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 311-349. doi: 10.1090/jams/906

[1] Angel, Omer, Crawford, Nicholas, Kozma, Gady Localization for linearly edge reinforced random walks Duke Math. J. 2014 889 921

[2] Basdevant, Anne-Laure, Singh, Arvind Continuous-time vertex reinforced jump processes on Galton-Watson trees Ann. Appl. Probab. 2012 1728 1743

[3] Collevecchio, Andrea Limit theorems for vertex-reinforced jump processes on regular trees Electron. J. Probab. 2009

[4] Davis, Burgess, Volkov, Stanislav Vertex-reinforced jump processes on trees and finite graphs Probab. Theory Related Fields 2004 42 62

[5] De Masi, A., Ferrari, P. A., Goldstein, S., Wick, W. D. An invariance principle for reversible Markov processes. Applications to random motions in random environments J. Statist. Phys. 1989 787 855

[6] Disertori, Margherita, Merkl, Franz, Rolles, Silke W. W. A supersymmetric approach to martingales related to the vertex-reinforced jump process ALEA Lat. Am. J. Probab. Math. Stat. 2017 529 555

[7] Disertori, Margherita, Sabot, Christophe, Tarrã¨S, Pierre Transience of edge-reinforced random walk Comm. Math. Phys. 2015 121 148

[8] Disertori, M., Spencer, T. Anderson localization for a supersymmetric sigma model Comm. Math. Phys. 2010 659 671

[9] Disertori, M., Spencer, T., Zirnbauer, M. R. Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model Comm. Math. Phys. 2010 435 486

[10] Halmos, Paul R. Measure Theory 1950

[11] Keane, M. S., Rolles, S. W. W. Edge-reinforced random walk on finite graphs 2000 217 234

[12] Lyons, Russell, Peres, Yuval Probability on trees and networks 2016

[13] Merkl, Franz, Rolles, Silke W. W. Bounding a random environment for two-dimensional edge-reinforced random walk Electron. J. Probab. 2008

[14] Merkl, Franz, Rolles, Silke W. W. A random environment for linearly edge-reinforced random walks on infinite graphs Probab. Theory Related Fields 2007 157 176

[15] Merkl, Franz, Rolles, Silke W. W. Recurrence of edge-reinforced random walk on a two-dimensional graph Ann. Probab. 2009 1679 1714

[16] Pemantle, Robin Phase transition in reinforced random walk and RWRE on trees Ann. Probab. 1988 1229 1241

[17] Berman, Abraham, Plemmons, Robert J. Nonnegative matrices in the mathematical sciences 1979

[18] Sabot, Christophe, Tarrã¨S, Pierre Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model J. Eur. Math. Soc. (JEMS) 2015 2353 2378

[19] Sabot, Christophe, Tarres, Pierre Inverting Ray-Knight identity Probab. Theory Related Fields 2016 559 580

[20] Sabot, Christophe, Tarrã¨S, Pierre, Zeng, Xiaolin The vertex reinforced jump process and a random Schrödinger operator on finite graphs Ann. Probab. 2017 3967 3986

[21] Zirnbauer, Martin R. Fourier analysis on a hyperbolic supermanifold with constant curvature Comm. Math. Phys. 1991 503 522

Cité par Sources :