Voir la notice de l'article provenant de la source American Mathematical Society
Sabot, Christophe 1 ; Zeng, Xiaolin 2
@article{10_1090_jams_906,
author = {Sabot, Christophe and Zeng, Xiaolin},
title = {A random {Schr\~A{\textparagraph}dinger} operator associated with the {Vertex} {Reinforced} {Jump} {Process} on infinite graphs},
journal = {Journal of the American Mathematical Society},
pages = {311--349},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2019},
doi = {10.1090/jams/906},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/906/}
}
TY - JOUR AU - Sabot, Christophe AU - Zeng, Xiaolin TI - A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs JO - Journal of the American Mathematical Society PY - 2019 SP - 311 EP - 349 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/906/ DO - 10.1090/jams/906 ID - 10_1090_jams_906 ER -
%0 Journal Article %A Sabot, Christophe %A Zeng, Xiaolin %T A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs %J Journal of the American Mathematical Society %D 2019 %P 311-349 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/906/ %R 10.1090/jams/906 %F 10_1090_jams_906
Sabot, Christophe; Zeng, Xiaolin. A random Schrödinger operator associated with the Vertex Reinforced Jump Process on infinite graphs. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 311-349. doi: 10.1090/jams/906
[1] , , Localization for linearly edge reinforced random walks Duke Math. J. 2014 889 921
[2] , Continuous-time vertex reinforced jump processes on Galton-Watson trees Ann. Appl. Probab. 2012 1728 1743
[3] Limit theorems for vertex-reinforced jump processes on regular trees Electron. J. Probab. 2009
[4] , Vertex-reinforced jump processes on trees and finite graphs Probab. Theory Related Fields 2004 42 62
[5] , , , An invariance principle for reversible Markov processes. Applications to random motions in random environments J. Statist. Phys. 1989 787 855
[6] , , A supersymmetric approach to martingales related to the vertex-reinforced jump process ALEA Lat. Am. J. Probab. Math. Stat. 2017 529 555
[7] , , Transience of edge-reinforced random walk Comm. Math. Phys. 2015 121 148
[8] , Anderson localization for a supersymmetric sigma model Comm. Math. Phys. 2010 659 671
[9] , , Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model Comm. Math. Phys. 2010 435 486
[10] Measure Theory 1950
[11] , Edge-reinforced random walk on finite graphs 2000 217 234
[12] , Probability on trees and networks 2016
[13] , Bounding a random environment for two-dimensional edge-reinforced random walk Electron. J. Probab. 2008
[14] , A random environment for linearly edge-reinforced random walks on infinite graphs Probab. Theory Related Fields 2007 157 176
[15] , Recurrence of edge-reinforced random walk on a two-dimensional graph Ann. Probab. 2009 1679 1714
[16] Phase transition in reinforced random walk and RWRE on trees Ann. Probab. 1988 1229 1241
[17] , Nonnegative matrices in the mathematical sciences 1979
[18] , Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model J. Eur. Math. Soc. (JEMS) 2015 2353 2378
[19] , Inverting Ray-Knight identity Probab. Theory Related Fields 2016 559 580
[20] , , The vertex reinforced jump process and a random Schrödinger operator on finite graphs Ann. Probab. 2017 3967 3986
[21] Fourier analysis on a hyperbolic supermanifold with constant curvature Comm. Math. Phys. 1991 503 522
Cité par Sources :