Essential surfaces in graph pairs
Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 893-919

Voir la notice de l'article provenant de la source American Mathematical Society

A well-known question of Gromov asks whether every one-ended hyperbolic group $\Gamma$ has a surface subgroup. We give a positive answer when $\Gamma$ is the fundamental group of a graph of free groups with cyclic edge groups. As a result, Gromov’s question is reduced (modulo a technical assumption on 2-torsion) to the case when $\Gamma$ is rigid. We also find surface subgroups in limit groups. It follows that a limit group with the same profinite completion as a free group must in fact be free, which answers a question of Remeslennikov in this case.
DOI : 10.1090/jams/901

Wilton, Henry 1

1 DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
@article{10_1090_jams_901,
     author = {Wilton, Henry},
     title = {Essential surfaces in graph pairs},
     journal = {Journal of the American Mathematical Society},
     pages = {893--919},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2018},
     doi = {10.1090/jams/901},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/901/}
}
TY  - JOUR
AU  - Wilton, Henry
TI  - Essential surfaces in graph pairs
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 893
EP  - 919
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/901/
DO  - 10.1090/jams/901
ID  - 10_1090_jams_901
ER  - 
%0 Journal Article
%A Wilton, Henry
%T Essential surfaces in graph pairs
%J Journal of the American Mathematical Society
%D 2018
%P 893-919
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/901/
%R 10.1090/jams/901
%F 10_1090_jams_901
Wilton, Henry. Essential surfaces in graph pairs. Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 893-919. doi: 10.1090/jams/901

[1] Alibegoviä‡, Emina A combination theorem for relatively hyperbolic groups Bull. London Math. Soc. 2005 459 466

[2] Baumslag, Gilbert Residually finite groups with the same finite images Compositio Math. 1974 249 252

[3] Bigdely, Hadi, Wise, Daniel T. Quasiconvexity and relatively hyperbolic groups that split Michigan Math. J. 2013 387 406

[4] Bowditch, Brian H. Cut points and canonical splittings of hyperbolic groups Acta Math. 1998 145 186

[5] Brady, Noel, Clay, Matt, Forester, Max Turn graphs and extremal surfaces in free groups 2011 171 178

[6] Bridson, M. R., Conder, M. D. E., Reid, A. W. Determining Fuchsian groups by their finite quotients Israel J. Math. 2016 1 41

[7] Calegari, Danny Surface subgroups from homology Geom. Topol. 2008 1995 2007

[8] Calegari, Danny scl 2009

[9] Calegari, Danny Stable commutator length is rational in free groups J. Amer. Math. Soc. 2009 941 961

[10] Calegari, Danny, Walker, Alden Random groups contain surface subgroups J. Amer. Math. Soc. 2015 383 419

[11] Calegari, Danny, Walker, Alden Surface subgroups from linear programming Duke Math. J. 2015 933 972

[12] Cashen, Christopher H. Splitting line patterns in free groups Algebr. Geom. Topol. 2016 621 673

[13] Cashen, Christopher H., Macura, Nataå¡A Line patterns in free groups Geom. Topol. 2011 1419 1475

[14] Culler, Marc Using surfaces to solve equations in free groups Topology 1981 133 145

[15] Dahmani, Franã§Ois Combination of convergence groups Geom. Topol. 2003 933 963

[16] Delzant, T. L’image d’un groupe dans un groupe hyperbolique Comment. Math. Helv. 1995 267 284

[17] Gordon, Cameron, Wilton, Henry On surface subgroups of doubles of free groups J. Lond. Math. Soc. (2) 2010 17 31

[18] Grunewald, F., Jaikin-Zapirain, A., Zalesskii, P. A. Cohomological goodness and the profinite completion of Bianchi groups Duke Math. J. 2008 53 72

[19] Guirardel, Vincent, Levitt, Gilbert JSJ decompositions of groups Astérisque 2017

[20] Hamenstã¤Dt, Ursula Incompressible surfaces in rank one locally symmetric spaces Geom. Funct. Anal. 2015 815 859

[21] Hall, Marshall, Jr. Subgroups of finite index in free groups Canad. J. Math. 1949 187 190

[22] Kahn, Jeremy, Markovic, Vladimir Immersing almost geodesic surfaces in a closed hyperbolic three manifold Ann. of Math. (2) 2012 1127 1190

[23] Kahn, Jeremy, Markovic, Vladimir The good pants homology and the Ehrenpreis conjecture Ann. of Math. (2) 2015 1 72

[24] Kharlampovich, Olga, Myasnikov, Alexei Tarski’s problem about the elementary theory of free groups has a positive solution Electron. Res. Announc. Amer. Math. Soc. 1998 101 108

[25] Kim, Sang-Hyun, Oum, Sang-Il Hyperbolic surface subgroups of one-ended doubles of free groups J. Topol. 2014 927 947

[26] Kim, Sang-Hyun, Wilton, Henry Polygonal words in free groups Q. J. Math. 2012 399 421

[27] Liu, Yi, Markovic, Vladimir Homology of curves and surfaces in closed hyperbolic 3-manifolds Duke Math. J. 2015 2723 2808

[28] Louder, Larsen, Touikan, Nicholas Strong accessibility for finitely presented groups Geom. Topol. 2017 1805 1835

[29] Manning, Jason Fox Virtually geometric words and Whitehead’s algorithm Math. Res. Lett. 2010 917 925

[30] Markovic, Vladimir Criterion for Cannon’s conjecture Geom. Funct. Anal. 2013 1035 1061

[31] Noskov, G. A., Remeslennikov, V. N., Roman′Kov, V. A. Infinite groups 1979

[32] Puder, Doron, Parzanchevski, Ori Measure preserving words are primitive J. Amer. Math. Soc. 2015 63 97

[33] Remeslennikov, V. N. ∃-free groups Sibirsk. Mat. Zh. 1989 193 197

[34] Scott, Peter, Wall, Terry Topological methods in group theory 1979 137 203

[35] Sela, Zlil Diophantine geometry over groups. I. Makanin-Razborov diagrams Publ. Math. Inst. Hautes Études Sci. 2001 31 105

[36] Serre, Jean-Pierre Arbres, amalgames, 𝑆𝐿₂ 1977

[37] Stallings, John R. Topology of finite graphs Invent. Math. 1983 551 565

[38] Touikan, Nicholas On the one-endedness of graphs of groups Pacific J. Math. 2015 463 478

[39] Whitehead, J. H. C. On equivalent sets of elements in a free group Ann. of Math. (2) 1936 782 800

[40] Wilton, Henry Hall’s theorem for limit groups Geom. Funct. Anal. 2008 271 303

[41] Wilton, Henry One-ended subgroups of graphs of free groups with cyclic edge groups Geom. Topol. 2012 665 683

[42] Wise, Daniel T. Subgroup separability of graphs of free groups with cyclic edge groups Q. J. Math. 2000 107 129

Cité par Sources :