Monoidal categorification of cluster algebras
Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 349-426

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring $A_q(\mathfrak {n}(w))$, associated with a symmetric Kac–Moody algebra and its Weyl group element $w$, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded $R$-modules to become a monoidal categorification, where $R$ is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of $A_q(\mathfrak {n}(w))$ which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of $q^{1/2}$. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.
DOI : 10.1090/jams/895

Kang, Seok-Jin 1 ; Kashiwara, Masaki 2 ; Kim, Myungho 3 ; Oh, Se-jin 4

1 Research Institute of Computers, Information and Communication, Pusan National University, 2, Busandaehak-ro Pusan 46241, Korea
2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
3 Department of Mathematics, Kyung Hee University, Seoul 02447, Korea
4 Department of Mathematics Ewha Womans University, Seoul 03760, Korea
@article{10_1090_jams_895,
     author = {Kang, Seok-Jin and Kashiwara, Masaki and Kim, Myungho and Oh, Se-jin},
     title = {Monoidal categorification of cluster algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {349--426},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2018},
     doi = {10.1090/jams/895},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/895/}
}
TY  - JOUR
AU  - Kang, Seok-Jin
AU  - Kashiwara, Masaki
AU  - Kim, Myungho
AU  - Oh, Se-jin
TI  - Monoidal categorification of cluster algebras
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 349
EP  - 426
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/895/
DO  - 10.1090/jams/895
ID  - 10_1090_jams_895
ER  - 
%0 Journal Article
%A Kang, Seok-Jin
%A Kashiwara, Masaki
%A Kim, Myungho
%A Oh, Se-jin
%T Monoidal categorification of cluster algebras
%J Journal of the American Mathematical Society
%D 2018
%P 349-426
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/895/
%R 10.1090/jams/895
%F 10_1090_jams_895
Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho; Oh, Se-jin. Monoidal categorification of cluster algebras. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 349-426. doi: 10.1090/jams/895

[1] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[2] Berenstein, Arkady, Zelevinsky, Andrei String bases for quantum groups of type 𝐴ᵣ 1993 51 89

[3] Berenstein, Arkady, Zelevinsky, Andrei Quantum cluster algebras Adv. Math. 2005 405 455

[4] Cerulli Irelli, Giovanni, Keller, Bernhard, Labardini-Fragoso, Daniel, Plamondon, Pierre-Guy Linear independence of cluster monomials for skew-symmetric cluster algebras Compos. Math. 2013 1753 1764

[5] Davison, Ben, Maulik, Davesh, Schã¼Rmann, Jã¶Rg, Szendrå‘I, Balã¡Zs Purity for graded potentials and quantum cluster positivity Compos. Math. 2015 1913 1944

[6] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. I. Foundations J. Amer. Math. Soc. 2002 497 529

[7] Geiss, Christof, Leclerc, Bernard, Schrã¶Er, Jan Semicanonical bases and preprojective algebras Ann. Sci. École Norm. Sup. (4) 2005 193 253

[8] GeiãŸ, Christof, Leclerc, Bernard, Schrã¶Er, Jan Kac-Moody groups and cluster algebras Adv. Math. 2011 329 433

[9] Geiss, Christof, Leclerc, Bernard, Schrã¶Er, Jan Factorial cluster algebras Doc. Math. 2013 249 274

[10] GeiãŸ, C., Leclerc, B., Schrã¶Er, J. Cluster structures on quantum coordinate rings Selecta Math. (N.S.) 2013 337 397

[11] Hernandez, David, Leclerc, Bernard Cluster algebras and quantum affine algebras Duke Math. J. 2010 265 341

[12] Hernandez, David, Leclerc, Bernard Monoidal categorifications of cluster algebras of type 𝐴 and 𝐷 2013 175 193

[13] Kang, Seok-Jin, Kashiwara, Masaki, Kim, Myungho, Oh, Se-Jin Symmetric quiver Hecke algebras and 𝑅-matrices of quantum affine algebras IV Selecta Math. (N.S.) 2016 1987 2015

[14] Kang, Seok-Jin, Kashiwara, Masaki, Kim, Myungho, Oh, Se-Jin Simplicity of heads and socles of tensor products Compos. Math. 2015 377 396

[15] Kashiwara, M. On crystal bases of the 𝑄-analogue of universal enveloping algebras Duke Math. J. 1991 465 516

[16] Kashiwara, Masaki Global crystal bases of quantum groups Duke Math. J. 1993 455 485

[17] Kashiwara, Masaki The crystal base and Littelmann’s refined Demazure character formula Duke Math. J. 1993 839 858

[18] Kashiwara, Masaki Crystal bases of modified quantized enveloping algebra Duke Math. J. 1994 383 413

[19] Kashiwara, Masaki On crystal bases 1995 155 197

[20] Khovanov, Mikhail, Lauda, Aaron D. A diagrammatic approach to categorification of quantum groups. I Represent. Theory 2009 309 347

[21] Khovanov, Mikhail, Lauda, Aaron D. A diagrammatic approach to categorification of quantum groups II Trans. Amer. Math. Soc. 2011 2685 2700

[22] Kimura, Yoshiyuki Quantum unipotent subgroup and dual canonical basis Kyoto J. Math. 2012 277 331

[23] Kimura, Yoshiyuki, Qin, Fan Graded quiver varieties, quantum cluster algebras and dual canonical basis Adv. Math. 2014 261 312

[24] Kuniba, Atsuo, Nakanishi, Tomoki, Suzuki, Junji 𝑇-systems and 𝑌-systems in integrable systems J. Phys. A 2011

[25] Lampe, Philipp A quantum cluster algebra of Kronecker type and the dual canonical basis Int. Math. Res. Not. IMRN 2011 2970 3005

[26] Lampe, P. Quantum cluster algebras of type 𝐴 and the dual canonical basis Proc. Lond. Math. Soc. (3) 2014 1 43

[27] Lauda, Aaron D., Vazirani, Monica Crystals from categorified quantum groups Adv. Math. 2011 803 861

[28] Leclerc, B. Imaginary vectors in the dual canonical basis of 𝑈_{𝑞}(𝔫) Transform. Groups 2003 95 104

[29] Lee, Kyungyong, Schiffler, Ralf Positivity for cluster algebras Ann. of Math. (2) 2015 73 125

[30] Lusztig, G. Canonical bases arising from quantized enveloping algebras J. Amer. Math. Soc. 1990 447 498

[31] Lusztig, G. Canonical bases in tensor products Proc. Nat. Acad. Sci. U.S.A. 1992 8177 8179

[32] Lusztig, George Introduction to quantum groups 1993

[33] Mcnamara, Peter J. Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type Math. Z. 2017 243 286

[34] Nakajima, Hiraku Cluster algebras and singular supports of perverse sheaves 2013 211 230

[35] Nakajima, Hiraku Quiver varieties and cluster algebras Kyoto J. Math. 2011 71 126

[36] Qin, Fan Triangular bases in quantum cluster algebras and monoidal categorification conjectures Duke Math. J. 2017 2337 2442

[37] Rouquier, Raphaã«L Quiver Hecke algebras and 2-Lie algebras Algebra Colloq. 2012 359 410

[38] Varagnolo, M., Vasserot, E. Canonical bases and KLR-algebras J. Reine Angew. Math. 2011 67 100

Cité par Sources :