Voir la notice de l'article provenant de la source American Mathematical Society
Kang, Seok-Jin 1 ; Kashiwara, Masaki 2 ; Kim, Myungho 3 ; Oh, Se-jin 4
@article{10_1090_jams_895,
author = {Kang, Seok-Jin and Kashiwara, Masaki and Kim, Myungho and Oh, Se-jin},
title = {Monoidal categorification of cluster algebras},
journal = {Journal of the American Mathematical Society},
pages = {349--426},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2018},
doi = {10.1090/jams/895},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/895/}
}
TY - JOUR AU - Kang, Seok-Jin AU - Kashiwara, Masaki AU - Kim, Myungho AU - Oh, Se-jin TI - Monoidal categorification of cluster algebras JO - Journal of the American Mathematical Society PY - 2018 SP - 349 EP - 426 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/895/ DO - 10.1090/jams/895 ID - 10_1090_jams_895 ER -
%0 Journal Article %A Kang, Seok-Jin %A Kashiwara, Masaki %A Kim, Myungho %A Oh, Se-jin %T Monoidal categorification of cluster algebras %J Journal of the American Mathematical Society %D 2018 %P 349-426 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/895/ %R 10.1090/jams/895 %F 10_1090_jams_895
Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho; Oh, Se-jin. Monoidal categorification of cluster algebras. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 349-426. doi: 10.1090/jams/895
[1] , , Faisceaux pervers 1982 5 171
[2] , String bases for quantum groups of type ð´áµ£ 1993 51 89
[3] , Quantum cluster algebras Adv. Math. 2005 405 455
[4] , , , Linear independence of cluster monomials for skew-symmetric cluster algebras Compos. Math. 2013 1753 1764
[5] , , , Purity for graded potentials and quantum cluster positivity Compos. Math. 2015 1913 1944
[6] , Cluster algebras. I. Foundations J. Amer. Math. Soc. 2002 497 529
[7] , , Semicanonical bases and preprojective algebras Ann. Sci. Ãcole Norm. Sup. (4) 2005 193 253
[8] , , Kac-Moody groups and cluster algebras Adv. Math. 2011 329 433
[9] , , Factorial cluster algebras Doc. Math. 2013 249 274
[10] , , Cluster structures on quantum coordinate rings Selecta Math. (N.S.) 2013 337 397
[11] , Cluster algebras and quantum affine algebras Duke Math. J. 2010 265 341
[12] , Monoidal categorifications of cluster algebras of type ð´ and ð· 2013 175 193
[13] , , , Symmetric quiver Hecke algebras and ð -matrices of quantum affine algebras IV Selecta Math. (N.S.) 2016 1987 2015
[14] , , , Simplicity of heads and socles of tensor products Compos. Math. 2015 377 396
[15] On crystal bases of the ð-analogue of universal enveloping algebras Duke Math. J. 1991 465 516
[16] Global crystal bases of quantum groups Duke Math. J. 1993 455 485
[17] The crystal base and Littelmannâs refined Demazure character formula Duke Math. J. 1993 839 858
[18] Crystal bases of modified quantized enveloping algebra Duke Math. J. 1994 383 413
[19] On crystal bases 1995 155 197
[20] , A diagrammatic approach to categorification of quantum groups. I Represent. Theory 2009 309 347
[21] , A diagrammatic approach to categorification of quantum groups II Trans. Amer. Math. Soc. 2011 2685 2700
[22] Quantum unipotent subgroup and dual canonical basis Kyoto J. Math. 2012 277 331
[23] , Graded quiver varieties, quantum cluster algebras and dual canonical basis Adv. Math. 2014 261 312
[24] , , ð-systems and ð-systems in integrable systems J. Phys. A 2011
[25] A quantum cluster algebra of Kronecker type and the dual canonical basis Int. Math. Res. Not. IMRN 2011 2970 3005
[26] Quantum cluster algebras of type ð´ and the dual canonical basis Proc. Lond. Math. Soc. (3) 2014 1 43
[27] , Crystals from categorified quantum groups Adv. Math. 2011 803 861
[28] Imaginary vectors in the dual canonical basis of ð_{ð}(ð«) Transform. Groups 2003 95 104
[29] , Positivity for cluster algebras Ann. of Math. (2) 2015 73 125
[30] Canonical bases arising from quantized enveloping algebras J. Amer. Math. Soc. 1990 447 498
[31] Canonical bases in tensor products Proc. Nat. Acad. Sci. U.S.A. 1992 8177 8179
[32] Introduction to quantum groups 1993
[33] Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type Math. Z. 2017 243 286
[34] Cluster algebras and singular supports of perverse sheaves 2013 211 230
[35] Quiver varieties and cluster algebras Kyoto J. Math. 2011 71 126
[36] Triangular bases in quantum cluster algebras and monoidal categorification conjectures Duke Math. J. 2017 2337 2442
[37] Quiver Hecke algebras and 2-Lie algebras Algebra Colloq. 2012 359 410
[38] , Canonical bases and KLR-algebras J. Reine Angew. Math. 2011 67 100
Cité par Sources :