Counterexamples to the Eisenbud–Goto regularity conjecture
Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 473-496

Voir la notice de l'article provenant de la source American Mathematical Society

Our main theorem shows that the regularity of nondegenerate homogeneous prime ideals is not bounded by any polynomial function of the degree; this holds over any field $k$. In particular, we provide counterexamples to the longstanding Regularity Conjecture, also known as the Eisenbud–Goto Conjecture (1984). We introduce a method which, starting from a homogeneous ideal $I$, produces a prime ideal whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms of numerical invariants of $I$. The method is also related to producing bounds in the spirit of Stillman’s Conjecture, recently solved by Ananyan and Hochster.
DOI : 10.1090/jams/891

McCullough, Jason 1 ; Peeva, Irena 2

1 Mathematics Department, Iowa State University, Ames, Iowa 50011
2 Mathematics Department, Cornell University, Ithaca, New York 14853
@article{10_1090_jams_891,
     author = {McCullough, Jason and Peeva, Irena},
     title = {Counterexamples to the {Eisenbud\^a€“Goto} regularity conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {473--496},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2018},
     doi = {10.1090/jams/891},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/891/}
}
TY  - JOUR
AU  - McCullough, Jason
AU  - Peeva, Irena
TI  - Counterexamples to the Eisenbud–Goto regularity conjecture
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 473
EP  - 496
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/891/
DO  - 10.1090/jams/891
ID  - 10_1090_jams_891
ER  - 
%0 Journal Article
%A McCullough, Jason
%A Peeva, Irena
%T Counterexamples to the Eisenbud–Goto regularity conjecture
%J Journal of the American Mathematical Society
%D 2018
%P 473-496
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/891/
%R 10.1090/jams/891
%F 10_1090_jams_891
McCullough, Jason; Peeva, Irena. Counterexamples to the Eisenbud–Goto regularity conjecture. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 473-496. doi: 10.1090/jams/891

[1] Ananyan, Tigran, Hochster, Melvin Ideals generated by quadratic polynomials Math. Res. Lett. 2012 233 244

[2] Bayer, Dave, Mumford, David What can be computed in algebraic geometry? 1993 1 48

[3] Bayer, David, Stillman, Michael On the complexity of computing syzygies J. Symbolic Comput. 1988 135 147

[4] Becker, Joseph On the boundedness and the unboundedness of the number of generators of ideals and multiplicity J. Algebra 1977 447 453

[5] Beder, Jesse, Mccullough, Jason, Nãºã±Ez-Betancourt, Luis, Seceleanu, Alexandra, Snapp, Bart, Stone, Branden Ideals with larger projective dimension and regularity J. Symbolic Comput. 2011 1105 1113

[6] Bertram, Aaron, Ein, Lawrence, Lazarsfeld, Robert Vanishing theorems, a theorem of Severi, and the equations defining projective varieties J. Amer. Math. Soc. 1991 587 602

[7] Brodmann, Markus Cohomology of certain projective surfaces with low sectional genus and degree 1999 173 200

[8] Brodmann, M., Vogel, W. Bounds for the cohomology and the Castelnuovo regularity of certain surfaces Nagoya Math. J. 1993 109 126

[9] Caviglia, Giulio, Sbarra, Enrico Characteristic-free bounds for the Castelnuovo-Mumford regularity Compos. Math. 2005 1365 1373

[10] Chardin, Marc Some results and questions on Castelnuovo-Mumford regularity 2007 1 40

[11] Chardin, Marc Bounds for Castelnuovo-Mumford regularity in terms of degrees of defining equations 2003 67 73

[12] Chardin, Marc, Fall, Amadou Lamine Sur la régularité de Castelnuovo-Mumford des idéaux, en dimension 2 C. R. Math. Acad. Sci. Paris 2005 233 238

[13] Chardin, Marc, Ulrich, Bernd Liaison and Castelnuovo-Mumford regularity Amer. J. Math. 2002 1103 1124

[14] De Fernex, Tommaso, Ein, Lawrence A vanishing theorem for log canonical pairs Amer. J. Math. 2010 1205 1221

[15] Derksen, Harm, Sidman, Jessica A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements Adv. Math. 2002 151 157

[16] Eisenbud, David Lectures on the geometry of syzygies 2004 115 152

[17] Eisenbud, David The geometry of syzygies 2005

[18] Eisenbud, David Commutative algebra 1995

[19] Eisenbud, David, Goto, Shiro Linear free resolutions and minimal multiplicity J. Algebra 1984 89 133

[20] Eisenbud, David, Ulrich, Bernd Notes on regularity stabilization Proc. Amer. Math. Soc. 2012 1221 1232

[21] Flenner, Hubert Die Sätze von Bertini für lokale Ringe Math. Ann. 1977 97 111

[22] Flã¸Ystad, Gunnar, Mccullough, Jason, Peeva, Irena Three themes of syzygies Bull. Amer. Math. Soc. (N.S.) 2016 415 435

[23] Galligo, Andr㩠Théorème de division et stabilité en géométrie analytique locale Ann. Inst. Fourier (Grenoble) 1979

[24] Gasharov, Vesselin, Peeva, Irena, Welker, Volkmar The lcm-lattice in monomial resolutions Math. Res. Lett. 1999 521 532

[25] Giaimo, Daniel On the Castelnuovo-Mumford regularity of connected curves Trans. Amer. Math. Soc. 2006 267 284

[26] Giusti, M. Some effectivity problems in polynomial ideal theory 1984 159 171

[27] Gruson, L., Lazarsfeld, R., Peskine, C. On a theorem of Castelnuovo, and the equations defining space curves Invent. Math. 1983 491 506

[28] Herzog, Jã¼Rgen, Hibi, Takayuki Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity Proc. Amer. Math. Soc. 2003 2641 2647

[29] Hoa, L㪠Tuã¢N, Miyazaki, Chikashi Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings Math. Ann. 1995 587 598

[30] Huneke, Craig On the symmetric and Rees algebra of an ideal generated by a 𝑑-sequence J. Algebra 1980 268 275

[31] Koh, Jee Ideals generated by quadrics exhibiting double exponential degrees J. Algebra 1998 225 245

[32] Kustin, Andrew R., Polini, Claudia, Ulrich, Bernd Rational normal scrolls and the defining equations of Rees algebras J. Reine Angew. Math. 2011 23 65

[33] Kwak, Sijong Castelnuovo regularity for smooth subvarieties of dimensions 3 and 4 J. Algebraic Geom. 1998 195 206

[34] Kwak, Si-Jong Castelnuovo-Mumford regularity bound for smooth threefolds in 𝑃⁵ and extremal examples J. Reine Angew. Math. 1999 21 34

[35] Lazarsfeld, Robert A sharp Castelnuovo bound for smooth surfaces Duke Math. J. 1987 423 429

[36] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[37] Mayr, Ernst W., Meyer, Albert R. The complexity of the word problems for commutative semigroups and polynomial ideals Adv. in Math. 1982 305 329

[38] Mccullough, Jason, Seceleanu, Alexandra Bounding projective dimension 2013 551 576

[39] Nagata, Masayoshi Local rings 1962

[40] Niu, Wenbo Castelnuovo-Mumford regularity bounds for singular surfaces Math. Z. 2015 609 620

[41] Noma, Atsushi Generic inner projections of projective varieties and an application to the positivity of double point divisors Trans. Amer. Math. Soc. 2014 4603 4623

[42] Peeva, Irena Graded syzygies 2011

[43] Pinkham, Henry C. A Castelnuovo bound for smooth surfaces Invent. Math. 1986 321 332

[44] Ran, Ziv Local differential geometry and generic projections of threefolds J. Differential Geom. 1990 131 137

[45] Ullery, Brooke Designer ideals with high Castelnuovo-Mumford regularity Math. Res. Lett. 2014 1215 1225

Cité par Sources :