Energy solutions of KPZ are unique
Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 427-471

Voir la notice de l'article provenant de la source American Mathematical Society

The Kardar–Parisi–Zhang (KPZ) equation is conjectured to universally describe the fluctuations of weakly asymmetric interface growth. Here we provide the first intrinsic well-posedness result for the stationary KPZ equation on the real line by showing that its energy solutions, as introduced by Gonçalves and Jara in 2010 and refined by Gubinelli and Jara, are unique. This is the first time that a singular stochastic PDE can be tackled using probabilistic methods, and the combination of the convergence results of the first work and many follow-up papers with our uniqueness proof establishes the weak KPZ universality conjecture for a wide class of models. Our proof builds on an observation of Funaki and Quastel from 2015, and a remarkable consequence is that the energy solution to the KPZ equation is not equal to the Cole–Hopf solution, but it involves an additional drift $t/12$.
DOI : 10.1090/jams/889

Gubinelli, Massimiliano 1 ; Perkowski, Nicolas 2

1 Hausdorff Center for Mathematics & Institute for Applied Mathematics, Universität Bonn, Bonn, Germany
2 Institut für Mathematik, Humboldt–Universität zu Berlin, Berlin, Germany
@article{10_1090_jams_889,
     author = {Gubinelli, Massimiliano and Perkowski, Nicolas},
     title = {Energy solutions of {KPZ} are unique},
     journal = {Journal of the American Mathematical Society},
     pages = {427--471},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2018},
     doi = {10.1090/jams/889},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/889/}
}
TY  - JOUR
AU  - Gubinelli, Massimiliano
AU  - Perkowski, Nicolas
TI  - Energy solutions of KPZ are unique
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 427
EP  - 471
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/889/
DO  - 10.1090/jams/889
ID  - 10_1090_jams_889
ER  - 
%0 Journal Article
%A Gubinelli, Massimiliano
%A Perkowski, Nicolas
%T Energy solutions of KPZ are unique
%J Journal of the American Mathematical Society
%D 2018
%P 427-471
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/889/
%R 10.1090/jams/889
%F 10_1090_jams_889
Gubinelli, Massimiliano; Perkowski, Nicolas. Energy solutions of KPZ are unique. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 427-471. doi: 10.1090/jams/889

[1] Amir, Gideon, Corwin, Ivan, Quastel, Jeremy Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions Comm. Pure Appl. Math. 2011 466 537

[2] Assing, Sigurd A pregenerator for Burgers equation forced by conservative noise Comm. Math. Phys. 2002 611 632

[3] Bahouri, Hajer, Chemin, Jean-Yves, Danchin, Raphaã«L Fourier analysis and nonlinear partial differential equations 2011

[4] Bertini, Lorenzo, Giacomin, Giambattista Stochastic Burgers and KPZ equations from particle systems Comm. Math. Phys. 1997 571 607

[5] Blondel, Oriane, Gonã§Alves, Patrã­Cia, Simon, Marielle Convergence to the stochastic Burgers equation from a degenerate microscopic dynamics Electron. J. Probab. 2016

[6] Cannizzaro, G., Friz, P. K., Gassiat, P. Malliavin calculus for regularity structures: the case of gPAM J. Funct. Anal. 2017 363 419

[7] Chan, Terence Scaling limits of Wick ordered KPZ equation Comm. Math. Phys. 2000 671 690

[8] Corwin, Ivan The Kardar-Parisi-Zhang equation and universality class Random Matrices Theory Appl. 2012

[9] Corwin, Ivan, Tsai, Li-Cheng KPZ equation limit of higher-spin exclusion processes Ann. Probab. 2017 1771 1798

[10] Diehl, Joscha, Gubinelli, Massimiliano, Perkowski, Nicolas The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions Comm. Math. Phys. 2017 549 589

[11] Dembo, Amir, Tsai, Li-Cheng Weakly asymmetric non-simple exclusion process and the Kardar-Parisi-Zhang equation Comm. Math. Phys. 2016 219 261

[12] Franco, Tertuliano, Gonã§Alves, Patrã­Cia, Simon, Marielle Crossover to the stochastic Burgers equation for the WASEP with a slow bond Comm. Math. Phys. 2016 801 838

[13] Funaki, Tadahisa, Quastel, Jeremy KPZ equation, its renormalization and invariant measures Stoch. Partial Differ. Equ. Anal. Comput. 2015 159 220

[14] Gonã§Alves, Patrã­Cia, Jara, Milton Nonlinear fluctuations of weakly asymmetric interacting particle systems Arch. Ration. Mech. Anal. 2014 597 644

[15] Gonã§Alves, Patrã­Cia, Jara, Milton, Sethuraman, Sunder A stochastic Burgers equation from a class of microscopic interactions Ann. Probab. 2015 286 338

[16] Gonã§Alves, Patrã­Cia, Jara, Milton, Simon, Marielle Second order Boltzmann-Gibbs principle for polynomial functions and applications J. Stat. Phys. 2017 90 113

[17] Gubinelli, Massimiliano, Imkeller, Peter, Perkowski, Nicolas Paracontrolled distributions and singular PDEs Forum Math. Pi 2015

[18] Gubinelli, M., Jara, M. Regularization by noise and stochastic Burgers equations Stoch. Partial Differ. Equ. Anal. Comput. 2013 325 350

[19] Gubinelli, Massimiliano, Perkowski, Nicolas KPZ reloaded Comm. Math. Phys. 2017 165 269

[20] Gubinelli, Massimiliano, Perkowski, Nicolas Lectures on singular stochastic PDEs 2015 89

[21] Gubinelli, Massimiliano, Perkowski, Nicolas The Hairer-Quastel universality result at stationarity 2016 101 115

[22] Hairer, Martin Solving the KPZ equation Ann. of Math. (2) 2013 559 664

[23] Hairer, M. A theory of regularity structures Invent. Math. 2014 269 504

[24] Janson, Svante Gaussian Hilbert spaces 1997

[25] Komorowski, Tomasz, Landim, Claudio, Olla, Stefano Fluctuations in Markov processes 2012

[26] Kupiainen, Antti, Marcozzi, Matteo Renormalization of generalized KPZ equation J. Stat. Phys. 2017 876 902

[27] Kupiainen, Antti Renormalization group and stochastic PDEs Ann. Henri Poincaré 2016 497 535

[28] Labbã©, Cyril Weakly asymmetric bridges and the KPZ equation Comm. Math. Phys. 2017 1261 1298

[29] Lã©Pingle, D. La variation d’ordre 𝑝 des semi-martingales Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1976 295 316

[30] Nualart, David The Malliavin calculus and related topics 2006

[31] Quastel, J. D. The Kardar-Parisi-Zhang equation and universality class 2014 113 133

[32] Quastel, Jeremy, Spohn, Herbert The one-dimensional KPZ equation and its universality class J. Stat. Phys. 2015 965 984

[33] Russo, Francesco, Vallois, Pierre Elements of stochastic calculus via regularization 2007 147 185

[34] Revuz, Daniel, Yor, Marc Continuous martingales and Brownian motion 1999

[35] Sasamoto, Tomohiro, Spohn, Herbert Exact height distributions for the KPZ equation with narrow wedge initial condition Nuclear Phys. B 2010 523 542

[36] Walsh, John B. An introduction to stochastic partial differential equations 1986 265 439

[37] Wu, Liming Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes Ann. Inst. H. Poincaré Probab. Statist. 1999 121 141

Cité par Sources :