Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_883,
author = {Jang, Seung uk and Jung, Junehyuk},
title = {Quantum unique ergodicity and the number of nodal domains of eigenfunctions},
journal = {Journal of the American Mathematical Society},
pages = {303--318},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2018},
doi = {10.1090/jams/883},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/883/}
}
TY - JOUR AU - Jang, Seung uk AU - Jung, Junehyuk TI - Quantum unique ergodicity and the number of nodal domains of eigenfunctions JO - Journal of the American Mathematical Society PY - 2018 SP - 303 EP - 318 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/883/ DO - 10.1090/jams/883 ID - 10_1090_jams_883 ER -
%0 Journal Article %A Jang, Seung uk %A Jung, Junehyuk %T Quantum unique ergodicity and the number of nodal domains of eigenfunctions %J Journal of the American Mathematical Society %D 2018 %P 303-318 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/883/ %R 10.1090/jams/883 %F 10_1090_jams_883
Jang, Seung uk; Jung, Junehyuk. Quantum unique ergodicity and the number of nodal domains of eigenfunctions. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 303-318. doi: 10.1090/jams/883
[1] , Hecke operators on Îâ(ð) Math. Ann. 1970 134 160
[2] On the wave equation on a compact Riemannian manifold without conjugate points Math. Z. 1977 249 276
[3] , , Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds Duke Math. J. 2007 445 486
[4] Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold Ann. Global Anal. Geom. 2004 231 252
[5] , Nodal intersections and ð¿^{ð} restriction theorems on the torus Israel J. Math. 2015 479 505
[6] Quantum ergodicity of boundary values of eigenfunctions: a control theory approach Canad. Math. Bull. 2005 3 15
[7] Ergodicité et fonctions propres du laplacien Comm. Math. Phys. 1985 497 502
[8] , Methods of mathematical physics. Vol. I 1953
[9] , , Exterior mass estimates and ð¿Â²-restriction bounds for Neumann data along hypersurfaces Int. Math. Res. Not. IMRN 2015 1638 1665
[10] , , Quantum ergodic restriction for Cauchy data: interior que and restricted que Math. Res. Lett. 2013 465 475
[11] Nodal sets of eigenfunctions on Riemann surfaces J. Differential Geom. 1992 493 506
[12] Probability: theory and examples 2010
[13] , Quantum ergodicity for restrictions to hypersurfaces Nonlinearity 2013 35 52
[14] , , Nodal domains of Maass forms I Geom. Funct. Anal. 2013 1515 1568
[15] , , Nodal domains of Maass forms II
[16] , Eigenfunctions with few critical points J. Differential Geom. 1999 177 182
[17] Quantitative quantum ergodicity and the nodal domains of Hecke-Maass cusp forms Comm. Math. Phys. 2016 603 653
[18] , Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution J. Differential Geom. 2016 37 66
[19] On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere Comm. Partial Differential Equations 1977 1233 1244
[20] Invariant measures and arithmetic quantum unique ergodicity Ann. of Math. (2) 2006 165 219
[21] Arithmetic, zeros, and nodal domains on the sphere Comm. Math. Phys. 2015 919 951
[22] , The behaviour of eigenstates of arithmetic hyperbolic manifolds Comm. Math. Phys. 1994 195 213
[23] Ergodic properties of eigenfunctions Uspehi Mat. Nauk 1974 181 182
[24] Quantum unique ergodicity for ðð¿â(â¤)\â Ann. of Math. (2) 2010 1529 1538
[25] Arithmetic triangle groups J. Math. Soc. Japan 1977 91 106
[26] Commensurability classes of arithmetic triangle groups J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1977 201 212
[27] , Quantum ergodic restriction theorems: manifolds without boundary Geom. Funct. Anal. 2013 715 775
[28] Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke Math. J. 1987 919 941
[29] Kuznecov sum formulae and SzegÅ limit formulae on manifolds Comm. Partial Differential Equations 1992 221 260
[30] Semiclassical analysis 2012
Cité par Sources :