Quantum unique ergodicity and the number of nodal domains of eigenfunctions
Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 303-318

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the Hecke-Maass eigenforms for a compact arithmetic triangle group have a growing number of nodal domains as the eigenvalue tends to $+\infty$. More generally the same is proved for eigenfunctions on negatively curved surfaces that are even or odd with respect to a geodesic symmetry and for which quantum unique ergodicity holds.
DOI : 10.1090/jams/883

Jang, Seung uk 1 ; Jung, Junehyuk 2

1 Center for Applications of Mathematical Principles (CAMP), National Institute for Mathematical Sciences (NIMS), Daejeon 34047, South Korea
2 360 State Street, New Haven, Connecticut 06510
@article{10_1090_jams_883,
     author = {Jang, Seung uk and Jung, Junehyuk},
     title = {Quantum unique ergodicity and the number of nodal domains of eigenfunctions},
     journal = {Journal of the American Mathematical Society},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2018},
     doi = {10.1090/jams/883},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/883/}
}
TY  - JOUR
AU  - Jang, Seung uk
AU  - Jung, Junehyuk
TI  - Quantum unique ergodicity and the number of nodal domains of eigenfunctions
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 303
EP  - 318
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/883/
DO  - 10.1090/jams/883
ID  - 10_1090_jams_883
ER  - 
%0 Journal Article
%A Jang, Seung uk
%A Jung, Junehyuk
%T Quantum unique ergodicity and the number of nodal domains of eigenfunctions
%J Journal of the American Mathematical Society
%D 2018
%P 303-318
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/883/
%R 10.1090/jams/883
%F 10_1090_jams_883
Jang, Seung uk; Jung, Junehyuk. Quantum unique ergodicity and the number of nodal domains of eigenfunctions. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 303-318. doi: 10.1090/jams/883

[1] Atkin, A. O. L., Lehner, J. Hecke operators on Γ₀(𝑚) Math. Ann. 1970 134 160

[2] Bã©Rard, Pierre H. On the wave equation on a compact Riemannian manifold without conjugate points Math. Z. 1977 249 276

[3] Burq, N., Gã©Rard, P., Tzvetkov, N. Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds Duke Math. J. 2007 445 486

[4] Bin, Xu Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold Ann. Global Anal. Geom. 2004 231 252

[5] Bourgain, Jean, Rudnick, Zeã©V Nodal intersections and 𝐿^{𝑝} restriction theorems on the torus Israel J. Math. 2015 479 505

[6] Burq, N. Quantum ergodicity of boundary values of eigenfunctions: a control theory approach Canad. Math. Bull. 2005 3 15

[7] Colin De Verdiã¨Re, Y. Ergodicité et fonctions propres du laplacien Comm. Math. Phys. 1985 497 502

[8] Courant, R., Hilbert, D. Methods of mathematical physics. Vol. I 1953

[9] Christianson, Hans, Hassell, Andrew, Toth, John A. Exterior mass estimates and 𝐿²-restriction bounds for Neumann data along hypersurfaces Int. Math. Res. Not. IMRN 2015 1638 1665

[10] Christianson, Hans, Toth, John A., Zelditch, Steve Quantum ergodic restriction for Cauchy data: interior que and restricted que Math. Res. Lett. 2013 465 475

[11] Dong, Rui-Tao Nodal sets of eigenfunctions on Riemann surfaces J. Differential Geom. 1992 493 506

[12] Durrett, Rick Probability: theory and examples 2010

[13] Dyatlov, Semyon, Zworski, Maciej Quantum ergodicity for restrictions to hypersurfaces Nonlinearity 2013 35 52

[14] Ghosh, Amit, Reznikov, Andre, Sarnak, Peter Nodal domains of Maass forms I Geom. Funct. Anal. 2013 1515 1568

[15] Ghosh, Amit, Reznikov, Andre, Sarnak, Peter Nodal domains of Maass forms II

[16] Jakobson, Dmitry, Nadirashvili, Nikolai Eigenfunctions with few critical points J. Differential Geom. 1999 177 182

[17] Jung, Junehyuk Quantitative quantum ergodicity and the nodal domains of Hecke-Maass cusp forms Comm. Math. Phys. 2016 603 653

[18] Jung, Junehyuk, Zelditch, Steve Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution J. Differential Geom. 2016 37 66

[19] Lewy, Hans On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere Comm. Partial Differential Equations 1977 1233 1244

[20] Lindenstrauss, Elon Invariant measures and arithmetic quantum unique ergodicity Ann. of Math. (2) 2006 165 219

[21] Magee, Michael Arithmetic, zeros, and nodal domains on the sphere Comm. Math. Phys. 2015 919 951

[22] Rudnick, Zeã©V, Sarnak, Peter The behaviour of eigenstates of arithmetic hyperbolic manifolds Comm. Math. Phys. 1994 195 213

[23] ŠNirel′Man, A. I. Ergodic properties of eigenfunctions Uspehi Mat. Nauk 1974 181 182

[24] Soundararajan, Kannan Quantum unique ergodicity for 𝑆𝐿₂(ℤ)\ℍ Ann. of Math. (2) 2010 1529 1538

[25] Takeuchi, Kisao Arithmetic triangle groups J. Math. Soc. Japan 1977 91 106

[26] Takeuchi, Kisao Commensurability classes of arithmetic triangle groups J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1977 201 212

[27] Toth, John A., Zelditch, Steve Quantum ergodic restriction theorems: manifolds without boundary Geom. Funct. Anal. 2013 715 775

[28] Zelditch, Steven Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke Math. J. 1987 919 941

[29] Zelditch, Steven Kuznecov sum formulae and Szegő limit formulae on manifolds Comm. Partial Differential Equations 1992 221 260

[30] Zworski, Maciej Semiclassical analysis 2012

Cité par Sources :