Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_877,
author = {Brown, Aaron and Hertz, Federico},
title = {Measure rigidity for random dynamics on surfaces and related skew products},
journal = {Journal of the American Mathematical Society},
pages = {1055--1132},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {2017},
doi = {10.1090/jams/877},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/877/}
}
TY - JOUR AU - Brown, Aaron AU - Hertz, Federico TI - Measure rigidity for random dynamics on surfaces and related skew products JO - Journal of the American Mathematical Society PY - 2017 SP - 1055 EP - 1132 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/877/ DO - 10.1090/jams/877 ID - 10_1090_jams_877 ER -
%0 Journal Article %A Brown, Aaron %A Hertz, Federico %T Measure rigidity for random dynamics on surfaces and related skew products %J Journal of the American Mathematical Society %D 2017 %P 1055-1132 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/877/ %R 10.1090/jams/877 %F 10_1090_jams_877
Brown, Aaron; Hertz, Federico. Measure rigidity for random dynamics on surfaces and related skew products. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1055-1132. doi: 10.1090/jams/877
[1] , Some limit theorems on set-functions Danske Vid. Selsk. Mat.-Fys. Medd. 1948 8
[2] , Extremal Lyapunov exponents: an invariance principle and applications Invent. Math. 2010 115 189
[3] , A Margulis-Ruelle inequality for random dynamical systems Arch. Math. (Basel) 1995 246 253
[4] , Characterization of measures satisfying the Pesin entropy formula for random dynamical systems J. Dynam. Differential Equations 1998 425 448
[5] , Nonuniform hyperbolicity 2007
[6] , , Dimension and product structure of hyperbolic measures Ann. of Math. (2) 1999 755 783
[7] , Mesures stationnaires et fermés invariants des espaces homogènes Ann. of Math. (2) 2011 1111 1162
[8] , Stationary measures and invariant subsets of homogeneous spaces (II) J. Amer. Math. Soc. 2013 659 734
[9] , Stationary measures and invariant subsets of homogeneous spaces (III) Ann. of Math. (2) 2013 1017 1059
[10] , , Généricité dâexposants de Lyapunov non-nuls pour des produits déterministes de matrices Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 579 624
[11] , , , Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus J. Amer. Math. Soc. 2011 231 280
[12] Equilibrium states and the ergodic theory of Anosov diffeomorphisms 1975
[13] , The ergodic theory of Axiom A flows Invent. Math. 1975 181 202
[14] Smooth stabilizers for measures on the torus Discrete Contin. Dyn. Syst. 2015 43 58
[15] , On simultaneous linearization of diffeomorphisms of the sphere Duke Math. J. 2007 475 505
[16] Noncommuting random products Trans. Amer. Math. Soc. 1963 377 428
[17] Optional supermartingales and the Andersen-Jessen theorem Z. Wahrsch. Verw. Gebiete 1978 263 272
[18] , Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori J. Mod. Dyn. 2007 123 146
[19] , , Nonuniform measure rigidity Ann. of Math. (2) 2011 361 400
[20] , Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778
[21] Ergodic theory of random transformations 1986
[22] Propriétés ergodiques des mesures de Sinaï Inst. Hautes Ãtudes Sci. Publ. Math. 1984 163 188
[23] Positivity of the exponent for stationary sequences of matrices 1986 56 73
[24] , The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesinâs entropy formula Ann. of Math. (2) 1985 509 539
[25] , The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension Ann. of Math. (2) 1985 540 574
[26] , Entropy formula for random transformations Probab. Theory Related Fields 1988 217 240
[27] , Smooth ergodic theory of random dynamical systems 1995
[28] , Dimension of hyperbolic measures of random diffeomorphisms Trans. Amer. Math. Soc. 2006 3751 3780
[29] A proof of Pesinâs formula Ergodic Theory Dynam. Systems 1981 95 102
[30] Families of invariant manifolds that correspond to nonzero characteristic exponents Izv. Akad. Nauk SSSR Ser. Mat. 1976
[31] , , Entropy formula for random dynamical systems: relations between entropy, exponents and dimension Ergodic Theory Dynam. Systems 2003 1907 1931
[32] , , Smooth ergodic theory for endomorphisms 2009
[33] Ã2 and Ã3 invariant measures and entropy Ergodic Theory Dynam. Systems 1990 395 406
[34] The Andersen-Jessen theorem revisited Math. Proc. Cambridge Philos. Soc. 1987 351 361
[35] Lectures on Lyapunov exponents 2014
Cité par Sources :