Measure rigidity for random dynamics on surfaces and related skew products
Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1055-1132

Voir la notice de l'article provenant de la source American Mathematical Society

Given a surface $M$ and a Borel probability measure $\nu$ on the group of $C^2$-diffeomorphisms of $M$ we study $\nu$-stationary probability measures on $M$. We prove for hyperbolic stationary measures the following trichotomy: the stable distributions are non-random, the measure is SRB, or the measure is supported on a finite set and is hence almost-surely invariant. In the proof of the above results, we study skew products with surface fibers over a measure-preserving transformation equipped with a decreasing sub-$\sigma$-algebra $\hat {\mathcal F}$ and derive a related result. A number of applications of our main theorem are presented.
DOI : 10.1090/jams/877

Brown, Aaron 1 ; Hertz, Federico 2

1 Department of Mathematics, The University of Chicago, Chicago, Illinois 60637
2 Department of Mathematics, The Pennsylvania State University, State College, Pennsylvania 16802
@article{10_1090_jams_877,
     author = {Brown, Aaron and Hertz, Federico},
     title = {Measure rigidity for random dynamics on surfaces and related skew products},
     journal = {Journal of the American Mathematical Society},
     pages = {1055--1132},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2017},
     doi = {10.1090/jams/877},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/877/}
}
TY  - JOUR
AU  - Brown, Aaron
AU  - Hertz, Federico
TI  - Measure rigidity for random dynamics on surfaces and related skew products
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 1055
EP  - 1132
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/877/
DO  - 10.1090/jams/877
ID  - 10_1090_jams_877
ER  - 
%0 Journal Article
%A Brown, Aaron
%A Hertz, Federico
%T Measure rigidity for random dynamics on surfaces and related skew products
%J Journal of the American Mathematical Society
%D 2017
%P 1055-1132
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/877/
%R 10.1090/jams/877
%F 10_1090_jams_877
Brown, Aaron; Hertz, Federico. Measure rigidity for random dynamics on surfaces and related skew products. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1055-1132. doi: 10.1090/jams/877

[1] Andersen, Erik Sparre, Jessen, Bã¸Rge Some limit theorems on set-functions Danske Vid. Selsk. Mat.-Fys. Medd. 1948 8

[2] Avila, Artur, Viana, Marcelo Extremal Lyapunov exponents: an invariance principle and applications Invent. Math. 2010 115 189

[3] Bahnmã¼Ller, Jã¶Rg, Bogenschã¼Tz, Thomas A Margulis-Ruelle inequality for random dynamical systems Arch. Math. (Basel) 1995 246 253

[4] Bahnmã¼Ller, Jã¶Rg, Liu, Pei-Dong Characterization of measures satisfying the Pesin entropy formula for random dynamical systems J. Dynam. Differential Equations 1998 425 448

[5] Barreira, Luis, Pesin, Yakov Nonuniform hyperbolicity 2007

[6] Barreira, Luis, Pesin, Yakov, Schmeling, Jã¶Rg Dimension and product structure of hyperbolic measures Ann. of Math. (2) 1999 755 783

[7] Benoist, Yves, Quint, Jean-Franã§Ois Mesures stationnaires et fermés invariants des espaces homogènes Ann. of Math. (2) 2011 1111 1162

[8] Benoist, Yves, Quint, Jean-Franã§Ois Stationary measures and invariant subsets of homogeneous spaces (II) J. Amer. Math. Soc. 2013 659 734

[9] Benoist, Yves, Quint, Jean-Franã§Ois Stationary measures and invariant subsets of homogeneous spaces (III) Ann. of Math. (2) 2013 1017 1059

[10] Bonatti, Christian, Gã³Mez-Mont, Xavier, Viana, Marcelo Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 579 624

[11] Bourgain, Jean, Furman, Alex, Lindenstrauss, Elon, Mozes, Shahar Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus J. Amer. Math. Soc. 2011 231 280

[12] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms 1975

[13] Bowen, Rufus, Ruelle, David The ergodic theory of Axiom A flows Invent. Math. 1975 181 202

[14] Brown, Aaron W. Smooth stabilizers for measures on the torus Discrete Contin. Dyn. Syst. 2015 43 58

[15] Dolgopyat, Dmitry, Krikorian, Raphaã«L On simultaneous linearization of diffeomorphisms of the sphere Duke Math. J. 2007 475 505

[16] Furstenberg, Harry Noncommuting random products Trans. Amer. Math. Soc. 1963 377 428

[17] Horowitz, Joseph Optional supermartingales and the Andersen-Jessen theorem Z. Wahrsch. Verw. Gebiete 1978 263 272

[18] Kalinin, Boris, Katok, Anatole Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori J. Mod. Dyn. 2007 123 146

[19] Kalinin, Boris, Katok, Anatole, Rodriguez Hertz, Federico Nonuniform measure rigidity Ann. of Math. (2) 2011 361 400

[20] Katok, A., Spatzier, R. J. Invariant measures for higher-rank hyperbolic abelian actions Ergodic Theory Dynam. Systems 1996 751 778

[21] Kifer, Yuri Ergodic theory of random transformations 1986

[22] Ledrappier, F. Propriétés ergodiques des mesures de Sinaï Inst. Hautes Études Sci. Publ. Math. 1984 163 188

[23] Ledrappier, F. Positivity of the exponent for stationary sequences of matrices 1986 56 73

[24] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[25] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension Ann. of Math. (2) 1985 540 574

[26] Ledrappier, F., Young, L.-S. Entropy formula for random transformations Probab. Theory Related Fields 1988 217 240

[27] Liu, Pei-Dong, Qian, Min Smooth ergodic theory of random dynamical systems 1995

[28] Liu, Pei-Dong, Xie, Jian-Sheng Dimension of hyperbolic measures of random diffeomorphisms Trans. Amer. Math. Soc. 2006 3751 3780

[29] Maã±Ã©, Ricardo A proof of Pesin’s formula Ergodic Theory Dynam. Systems 1981 95 102

[30] Pesin, Ja. B. Families of invariant manifolds that correspond to nonzero characteristic exponents Izv. Akad. Nauk SSSR Ser. Mat. 1976

[31] Qian, Min, Qian, Min-Ping, Xie, Jian-Sheng Entropy formula for random dynamical systems: relations between entropy, exponents and dimension Ergodic Theory Dynam. Systems 2003 1907 1931

[32] Qian, Min, Xie, Jian-Sheng, Zhu, Shu Smooth ergodic theory for endomorphisms 2009

[33] Rudolph, Daniel J. ×2 and ×3 invariant measures and entropy Ergodic Theory Dynam. Systems 1990 395 406

[34] Schmidt, Klaus D. The Andersen-Jessen theorem revisited Math. Proc. Cambridge Philos. Soc. 1987 351 361

[35] Viana, Marcelo Lectures on Lyapunov exponents 2014

Cité par Sources :