Voir la notice de l'article provenant de la source American Mathematical Society
Tosatti, Valentino 1 ; Weinkove, Ben 1
@article{10_1090_jams_875,
author = {Tosatti, Valentino and Weinkove, Ben},
title = {The {Monge-Amp\~A{\textasciidieresis}re} equation for ({\dh}-1)-plurisubharmonic functions on a compact {K\~A{\textcurrency}hler} manifold},
journal = {Journal of the American Mathematical Society},
pages = {311--346},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2017},
doi = {10.1090/jams/875},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/875/}
}
TY - JOUR AU - Tosatti, Valentino AU - Weinkove, Ben TI - The Monge-Ampère equation for (ð-1)-plurisubharmonic functions on a compact Kähler manifold JO - Journal of the American Mathematical Society PY - 2017 SP - 311 EP - 346 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/875/ DO - 10.1090/jams/875 ID - 10_1090_jams_875 ER -
%0 Journal Article %A Tosatti, Valentino %A Weinkove, Ben %T The Monge-Ampère equation for (ð-1)-plurisubharmonic functions on a compact Kähler manifold %J Journal of the American Mathematical Society %D 2017 %P 311-346 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/875/ %R 10.1090/jams/875 %F 10_1090_jams_875
Tosatti, Valentino; Weinkove, Ben. The Monge-Ampère equation for (ð-1)-plurisubharmonic functions on a compact Kähler manifold. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 311-346. doi: 10.1090/jams/875
[1] , The Dirichlet problem for a complex Monge-Ampère equation Invent. Math. 1976 1 44
[2] A local index theorem for non-Kähler manifolds Math. Ann. 1989 681 699
[3] Weak solutions to the complex Hessian equation Ann. Inst. Fourier (Grenoble) 2005 1735 1756
[4] , , , The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension J. Algebraic Geom. 2013 201 248
[5] , , The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian Acta Math. 1985 261 301
[6] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372
[7] Ãquations de Monge-Ampère sur les variétés hermitiennes compactes Bull. Sci. Math. (2) 1987 343 385
[8] , A variational theory of the Hessian equation Comm. Pure Appl. Math. 2001 1029 1064
[9] , A priori estimates for complex Hessian equations Anal. PDE 2014 227 244
[10] , Properties of manifolds with skew-symmetric torsion and special holonomy Adv. Math. 2004 439 450
[11] Cocalibrated ðºâ-manifolds with Ricci flat characteristic connection Commun. Math. 2013 1 13
[12] Specific non-Kähler Hermitian metrics on compact complex manifolds 2012 79 90
[13] , , Balanced metrics on non-Kähler Calabi-Yau threefolds J. Differential Geom. 2012 81 129
[14] , , Form-type Calabi-Yau equations Math. Res. Lett. 2010 887 903
[15] , , Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature Calc. Var. Partial Differential Equations 2015 327 344
[16] , Relations between the Kähler cone and the balanced cone of a Kähler manifold Adv. Math. 2014 230 252
[17] , The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation J. Differential Geom. 2008 369 428
[18] Le théorème de lâexcentricité nulle C. R. Acad. Sci. Paris Sér. A-B 1977
[19] , Elliptic partial differential equations of second order 1977
[20] Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds Comm. Anal. Geom. 2011 277 303
[21] Geometry of compact complex homogeneous spaces with vanishing first Chern class Adv. Math. 2011 3136 3159
[22] , Complex Monge-Ampère equations and totally real submanifolds Adv. Math. 2010 1185 1223
[23] , , Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class Asian J. Math. 2003 39 79
[24] , , A constant rank theorem for Hermitian ð-convex solutions of complex Laplace equations Methods Appl. Anal. 2009 263 289
[25] , Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds J. Differential Geom. 2011 395 482
[26] , Geometric plurisubharmonicity and convexity: an introduction Adv. Math. 2012 2428 2456
[27] , Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry 2013 103 156
[28] Complex Hessian equation on Kähler manifold Int. Math. Res. Not. IMRN 2009 3098 3111
[29] , , A second order estimate for complex Hessian equations on a compact Kähler manifold Math. Res. Lett. 2010 547 561
[30] Complex Hessian equations on some compact Kähler manifolds Int. J. Math. Math. Sci. 2012
[31] Mixed volume forms and a complex equation of Monge-Ampère type on Kähler manifolds of positive curvature Izv. Ross. Akad. Nauk Ser. Mat. 2010 65 78
[32] On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian Asian J. Math. 2004 87 106
[33] , The existence of supersymmetric string theory with torsion J. Differential Geom. 2005 143 181
[34] Viscosity solutions to complex Hessian equations J. Funct. Anal. 2013 1355 1379
[35] On the existence of special metrics in complex geometry Acta Math. 1982 261 295
[36] , Complex manifolds 1971
[37] Hölder continuous solutions to complex Hessian equations Potential Anal. 2014 887 902
[38] , , Complex Monge-Ampère equations 2012 327 410
[39] , The Dirichlet problem for degenerate complex Monge-Ampere equations Comm. Anal. Geom. 2010 145 170
[40] , On pointwise gradient estimates for the complex Monge-Ampère equation 2012 87 95
[41] Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics Invent. Math. 2013 515 534
[42] ð-convex Riemannian manifolds Invent. Math. 1986 437 447
[43] , Local Calabi and curvature estimates for the Chern-Ricci flow New York J. Math. 2013 565 582
[44] Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics 1987 171
[45] Superstrings with torsion Nuclear Phys. B 1986 253 284
[46] A note on the cone of mobile curves C. R. Math. Acad. Sci. Paris 2010 71 73
[47] , Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds Asian J. Math. 2010 19 40
[48] , The complex Monge-Ampère equation on compact Hermitian manifolds J. Amer. Math. Soc. 2010 1187 1195
[49] , On the evolution of a Hermitian metric by its Chern-Ricci form J. Differential Geom. 2015 125 163
[50] , The Chern-Ricci flow on complex surfaces Compos. Math. 2013 2101 2138
[51] , , Collapsing of the Chern-Ricci flow on elliptic surfaces Math. Ann. 2015 1223 1271
[52] Fully nonlinear, uniformly elliptic equations under natural structure conditions Trans. Amer. Math. Soc. 1983 751 769
[53] , Hessian measures. II Ann. of Math. (2) 1999 579 604
[54] Manifolds of partially positive curvature Indiana Univ. Math. J. 1987 525 548
[55] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
[56] A priori estimates for complex Monge-Ampère equation on Hermitian manifolds Int. Math. Res. Not. IMRN 2010 3814 3836
Cité par Sources :