The Monge-Ampère equation for (𝑛-1)-plurisubharmonic functions on a compact Kähler manifold
Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 311-346

Voir la notice de l'article provenant de la source American Mathematical Society

A $C^2$ function on $\mathbb {C}^n$ is called $(n-1)$-plurisubharmonic in the sense of Harvey-Lawson if the sum of any $n-1$ eigenvalues of its complex Hessian is non-negative. We show that the associated Monge-Ampère equation can be solved on any compact Kähler manifold. As a consequence we prove the existence of solutions to an equation of Fu-Wang-Wu, giving Calabi-Yau theorems for balanced, Gauduchon, and strongly Gauduchon metrics on compact Kähler manifolds.
DOI : 10.1090/jams/875

Tosatti, Valentino 1 ; Weinkove, Ben 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
@article{10_1090_jams_875,
     author = {Tosatti, Valentino and Weinkove, Ben},
     title = {The {Monge-Amp\~A{\textasciidieresis}re} equation for ({\dh}‘›-1)-plurisubharmonic functions on a compact {K\~A{\textcurrency}hler} manifold},
     journal = {Journal of the American Mathematical Society},
     pages = {311--346},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2017},
     doi = {10.1090/jams/875},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/875/}
}
TY  - JOUR
AU  - Tosatti, Valentino
AU  - Weinkove, Ben
TI  - The Monge-Ampère equation for (𝑛-1)-plurisubharmonic functions on a compact Kähler manifold
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 311
EP  - 346
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/875/
DO  - 10.1090/jams/875
ID  - 10_1090_jams_875
ER  - 
%0 Journal Article
%A Tosatti, Valentino
%A Weinkove, Ben
%T The Monge-Ampère equation for (𝑛-1)-plurisubharmonic functions on a compact Kähler manifold
%J Journal of the American Mathematical Society
%D 2017
%P 311-346
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/875/
%R 10.1090/jams/875
%F 10_1090_jams_875
Tosatti, Valentino; Weinkove, Ben. The Monge-Ampère equation for (𝑛-1)-plurisubharmonic functions on a compact Kähler manifold. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 311-346. doi: 10.1090/jams/875

[1] Bedford, Eric, Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation Invent. Math. 1976 1 44

[2] Bismut, Jean-Michel A local index theorem for non-Kähler manifolds Math. Ann. 1989 681 699

[3] Bå‚Ocki, Zbigniew Weak solutions to the complex Hessian equation Ann. Inst. Fourier (Grenoble) 2005 1735 1756

[4] Boucksom, Sã©Bastien, Demailly, Jean-Pierre, PäƒUn, Mihai, Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension J. Algebraic Geom. 2013 201 248

[5] Caffarelli, L., Nirenberg, L., Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian Acta Math. 1985 261 301

[6] Cao, Huai Dong Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372

[7] Cherrier, Pascal Équations de Monge-Ampère sur les variétés hermitiennes compactes Bull. Sci. Math. (2) 1987 343 385

[8] Chou, Kai-Seng, Wang, Xu-Jia A variational theory of the Hessian equation Comm. Pure Appl. Math. 2001 1029 1064

[9] Dinew, Så‚Awomir, Koå‚Odziej, Så‚Awomir A priori estimates for complex Hessian equations Anal. PDE 2014 227 244

[10] Fino, Anna, Grantcharov, Gueo Properties of manifolds with skew-symmetric torsion and special holonomy Adv. Math. 2004 439 450

[11] Friedrich, Thomas Cocalibrated 𝐺₂-manifolds with Ricci flat characteristic connection Commun. Math. 2013 1 13

[12] Fu, Jixiang Specific non-Kähler Hermitian metrics on compact complex manifolds 2012 79 90

[13] Fu, Jixiang, Li, Jun, Yau, Shing-Tung Balanced metrics on non-Kähler Calabi-Yau threefolds J. Differential Geom. 2012 81 129

[14] Fu, Jixiang, Wang, Zhizhang, Wu, Damin Form-type Calabi-Yau equations Math. Res. Lett. 2010 887 903

[15] Fu, Jixiang, Wang, Zhizhang, Wu, Damin Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature Calc. Var. Partial Differential Equations 2015 327 344

[16] Fu, Jixiang, Xiao, Jian Relations between the Kähler cone and the balanced cone of a Kähler manifold Adv. Math. 2014 230 252

[17] Fu, Ji-Xiang, Yau, Shing-Tung The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation J. Differential Geom. 2008 369 428

[18] Gauduchon, Paul Le théorème de l’excentricité nulle C. R. Acad. Sci. Paris Sér. A-B 1977

[19] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1977

[20] Gill, Matt Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds Comm. Anal. Geom. 2011 277 303

[21] Grantcharov, Gueo Geometry of compact complex homogeneous spaces with vanishing first Chern class Adv. Math. 2011 3136 3159

[22] Guan, Bo, Li, Qun Complex Monge-Ampère equations and totally real submanifolds Adv. Math. 2010 1185 1223

[23] Gutowski, Jan, Ivanov, Stefan, Papadopoulos, George Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class Asian J. Math. 2003 39 79

[24] Han, Fei, Ma, Xi-Nan, Wu, Damin A constant rank theorem for Hermitian 𝑘-convex solutions of complex Laplace equations Methods Appl. Anal. 2009 263 289

[25] Harvey, F. Reese, Lawson, H. Blaine, Jr. Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds J. Differential Geom. 2011 395 482

[26] Harvey, F. Reese, Lawson, H. Blaine, Jr. Geometric plurisubharmonicity and convexity: an introduction Adv. Math. 2012 2428 2456

[27] Harvey, F. Reese, Lawson, H. Blaine, Jr. Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry 2013 103 156

[28] Hou, Zuoliang Complex Hessian equation on Kähler manifold Int. Math. Res. Not. IMRN 2009 3098 3111

[29] Hou, Zuoliang, Ma, Xi-Nan, Wu, Damin A second order estimate for complex Hessian equations on a compact Kähler manifold Math. Res. Lett. 2010 547 561

[30] Jbilou, Asma Complex Hessian equations on some compact Kähler manifolds Int. J. Math. Math. Sci. 2012

[31] Kokarev, V. N. Mixed volume forms and a complex equation of Monge-Ampère type on Kähler manifolds of positive curvature Izv. Ross. Akad. Nauk Ser. Mat. 2010 65 78

[32] Li, Song-Ying On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian Asian J. Math. 2004 87 106

[33] Li, Jun, Yau, Shing-Tung The existence of supersymmetric string theory with torsion J. Differential Geom. 2005 143 181

[34] Lu, Hoang Chinh Viscosity solutions to complex Hessian equations J. Funct. Anal. 2013 1355 1379

[35] Michelsohn, M. L. On the existence of special metrics in complex geometry Acta Math. 1982 261 295

[36] Morrow, James, Kodaira, Kunihiko Complex manifolds 1971

[37] Nguyen, Ngoc Cuong Hölder continuous solutions to complex Hessian equations Potential Anal. 2014 887 902

[38] Phong, D. H., Song, Jian, Sturm, Jacob Complex Monge-Ampère equations 2012 327 410

[39] Phong, D. H., Sturm, Jacob The Dirichlet problem for degenerate complex Monge-Ampere equations Comm. Anal. Geom. 2010 145 170

[40] Phong, Duong H., Sturm, Jacob On pointwise gradient estimates for the complex Monge-Ampère equation 2012 87 95

[41] Popovici, Dan Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics Invent. Math. 2013 515 534

[42] Sha, Ji-Ping 𝑝-convex Riemannian manifolds Invent. Math. 1986 437 447

[43] Sherman, Morgan, Weinkove, Ben Local Calabi and curvature estimates for the Chern-Ricci flow New York J. Math. 2013 565 582

[44] Siu, Yum Tong Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics 1987 171

[45] Strominger, Andrew Superstrings with torsion Nuclear Phys. B 1986 253 284

[46] Toma, Matei A note on the cone of mobile curves C. R. Math. Acad. Sci. Paris 2010 71 73

[47] Tosatti, Valentino, Weinkove, Ben Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds Asian J. Math. 2010 19 40

[48] Tosatti, Valentino, Weinkove, Ben The complex Monge-Ampère equation on compact Hermitian manifolds J. Amer. Math. Soc. 2010 1187 1195

[49] Tosatti, Valentino, Weinkove, Ben On the evolution of a Hermitian metric by its Chern-Ricci form J. Differential Geom. 2015 125 163

[50] Tosatti, Valentino, Weinkove, Ben The Chern-Ricci flow on complex surfaces Compos. Math. 2013 2101 2138

[51] Tosatti, Valentino, Weinkove, Ben, Yang, Xiaokui Collapsing of the Chern-Ricci flow on elliptic surfaces Math. Ann. 2015 1223 1271

[52] Trudinger, Neil S. Fully nonlinear, uniformly elliptic equations under natural structure conditions Trans. Amer. Math. Soc. 1983 751 769

[53] Trudinger, Neil S., Wang, Xu-Jia Hessian measures. II Ann. of Math. (2) 1999 579 604

[54] Wu, H. Manifolds of partially positive curvature Indiana Univ. Math. J. 1987 525 548

[55] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[56] Zhang, Xiangwen A priori estimates for complex Monge-Ampère equation on Hermitian manifolds Int. Math. Res. Not. IMRN 2010 3814 3836

Cité par Sources :