Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics
Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 347-387

Voir la notice de l'article provenant de la source American Mathematical Society

Well-known conjectures of Tian predict that the existence of canonical Kähler metrics should be equivalent to various notions of properness of Mabuchi’s K-energy functional. First, we provide counterexamples to Tian’s first conjecture in the presence of continuous automorphisms. Second, we resolve Tian’s second conjecture, confirming the Moser–Trudinger inequality for Fano manifolds. The construction hinges upon an alternative approach to properness that uses in an essential way the metric completion with respect to a Finsler metric and its quotients with respect to group actions. This approach also allows us to formulate and prove new optimal replacements for Tian’s first conjecture in the setting of smooth and singular Kähler–Einstein metrics, with or without automorphisms, as well as for Kähler–Ricci solitons. Moreover, we reduce both Tian’s original first conjecture (in the absence of automorphisms) and our modification of it (in the presence of automorphisms) in the general case of constant scalar curvature metrics to a conjecture on regularity of minimizers of the K-energy in the Finsler metric completion.
DOI : 10.1090/jams/873

Darvas, Tamás 1 ; Rubinstein, Yanir 1

1 Department of Mathematics, University of Maryland, 4176 Campus Drive, College Park, Maryland 20742-4015
@article{10_1090_jams_873,
     author = {Darvas, Tam\~A{\textexclamdown}s and Rubinstein, Yanir},
     title = {Tian\^a€™s properness conjectures and {Finsler} geometry of the space of {K\~A{\textcurrency}hler} metrics},
     journal = {Journal of the American Mathematical Society},
     pages = {347--387},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2017},
     doi = {10.1090/jams/873},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/873/}
}
TY  - JOUR
AU  - Darvas, Tamás
AU  - Rubinstein, Yanir
TI  - Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 347
EP  - 387
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/873/
DO  - 10.1090/jams/873
ID  - 10_1090_jams_873
ER  - 
%0 Journal Article
%A Darvas, Tamás
%A Rubinstein, Yanir
%T Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics
%J Journal of the American Mathematical Society
%D 2017
%P 347-387
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/873/
%R 10.1090/jams/873
%F 10_1090_jams_873
Darvas, Tamás; Rubinstein, Yanir. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 347-387. doi: 10.1090/jams/873

[1] Aubin, Thierry Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité J. Funct. Anal. 1984 143 153

[2] Aubin, Thierry Some nonlinear problems in Riemannian geometry 1998

[3] Bando, Shigetoshi, Mabuchi, Toshiki Uniqueness of Einstein Kähler metrics modulo connected group actions 1987 11 40

[4] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[5] Berman, Robert J. A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics Adv. Math. 2013 1254 1297

[6] Berman, Robert, Boucksom, Sã©Bastien Growth of balls of holomorphic sections and energy at equilibrium Invent. Math. 2010 337 394

[7] Berman, Robert J., Boucksom, Sã©Bastien, Guedj, Vincent, Zeriahi, Ahmed A variational approach to complex Monge-Ampère equations Publ. Math. Inst. Hautes Études Sci. 2013 179 245

[8] Boucksom, Sã©Bastien, Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Monge-Ampère equations in big cohomology classes Acta Math. 2010 199 262

[9] Berndtsson, Bo A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry Invent. Math. 2015 149 200

[10] Bå‚Ocki, Zbigniew, Koå‚Odziej, Så‚Awomir On regularization of plurisubharmonic functions on manifolds Proc. Amer. Math. Soc. 2007 2089 2093

[11] Bump, Daniel Lie groups 2004

[12] Cao, Huai-Dong, Tian, Gang, Zhu, Xiaohua Kähler-Ricci solitons on compact complex manifolds with 𝐶₁(𝑀)>0 Geom. Funct. Anal. 2005 697 719

[13] Calabi, Eugenio Extremal isosystolic metrics for compact surfaces 1996 167 204

[14] Cheltsov, Ivan A., Rubinstein, Yanir A. Asymptotically log Fano varieties Adv. Math. 2015 1241 1300

[15] Chen, X. X. A new parabolic flow in Kähler manifolds Comm. Anal. Geom. 2004 837 852

[16] Chen, Xiuxiong The space of Kähler metrics J. Differential Geom. 2000 189 234

[17] Chen, Xiuxiong, Donaldson, Simon, Sun, Song Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities J. Amer. Math. Soc. 2015 183 197

[18] Clarke, Brian, Rubinstein, Yanir A. Ricci flow and the metric completion of the space of Kähler metrics Amer. J. Math. 2013 1477 1505

[19] Darvas, Tamã¡S The Mabuchi geometry of finite energy classes Adv. Math. 2015 182 219

[20] Ding, Wei Yue Remarks on the existence problem of positive Kähler-Einstein metrics Math. Ann. 1988 463 471

[21] Dolgachev, Igor V. Classical algebraic geometry 2012

[22] Donaldson, S. K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics 1999 13 33

[23] Futaki, A. An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443

[24] Guedj, Vincent, Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions J. Funct. Anal. 2007 442 482

[25] Guenancia, Henri, PäƒUn, Mihai Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors J. Differential Geom. 2016 15 57

[26] Hazod, W., Hofmann, K. H., Scheffler, H.-P., Wã¼Stner, M., Zeuner, H. Normalizers of compact subgroups, the existence of commuting automorphisms, and applications to operator semistable measures J. Lie Theory 1998 189 209

[27] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 2001

[28] Jeffres, Thalia, Mazzeo, Rafe, Rubinstein, Yanir A. Kähler-Einstein metrics with edge singularities Ann. of Math. (2) 2016 95 176

[29] Koå‚Odziej, Så‚Awomir The complex Monge-Ampère equation and pluripotential theory Mem. Amer. Math. Soc. 2005

[30] Li, Chi, Sun, Song Conical Kähler-Einstein metrics revisited Comm. Math. Phys. 2014 927 973

[31] Lichnerowicz, Andr㩠Transformations analytiques et isométries d’une variété kählérienne compacte C. R. Acad. Sci. Paris 1958 855 857

[32] Mabuchi, Toshiki Some symplectic geometry on compact Kähler manifolds. I Osaka J. Math. 1987 227 252

[33] Mabuchi, Toshiki Multiplier Hermitian structures on Kähler manifolds Nagoya Math. J. 2003 73 115

[34] Matsushima, Yoz㴠Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne Nagoya Math. J. 1957 145 150

[35] Phong, D. H., Song, Jian, Sturm, Jacob Complex Monge-Ampère equations 2012 327 410

[36] Phong, D. H., Song, Jian, Sturm, Jacob, Weinkove, Ben The Moser-Trudinger inequality on Kähler-Einstein manifolds Amer. J. Math. 2008 1067 1085

[37] Phong, D. H., Sturm, Jacob Lectures on stability and constant scalar curvature 2009 101 176

[38] Postnikov, M. M. Geometry VI 2001

[39] Rubinstein, Yanir A. On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood J. Funct. Anal. 2008 2641 2660

[40] Rubinstein, Yanir A. Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics Adv. Math. 2008 1526 1565

[41] Rubinstein, Yanir A. Smooth and singular Kähler-Einstein metrics 2014 45 138

[42] Sano, Yuji The best constant of the Moser-Trudinger inequality on 𝑆² Trans. Amer. Math. Soc. 2004 3477 3482

[43] Semmes, Stephen Complex Monge-Ampère and symplectic manifolds Amer. J. Math. 1992 495 550

[44] Siu, Yum Tong The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group Ann. of Math. (2) 1988 585 627

[45] Song, Jian, Weinkove, Ben Energy functionals and canonical Kähler metrics Duke Math. J. 2007 159 184

[46] Song, Jian, Weinkove, Ben On the convergence and singularities of the 𝐽-flow with applications to the Mabuchi energy Comm. Pure Appl. Math. 2008 210 229

[47] Streets, Jeffrey Long time existence of minimizing movement solutions of Calabi flow Adv. Math. 2014 688 729

[48] Stroppel, Markus Locally compact groups 2006

[49] Thomas, R. P. Notes on GIT and symplectic reduction for bundles and varieties 2006 221 273

[50] Tian, Gang The 𝐾-energy on hypersurfaces and stability Comm. Anal. Geom. 1994 239 265

[51] Tian, Gang Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37

[52] Tian, Gang Canonical metrics in Kähler geometry 2000

[53] Tian, Gang, Yau, Shing-Tung Kähler-Einstein metrics on complex surfaces with 𝐶₁>0 Comm. Math. Phys. 1987 175 203

[54] Tian, Gang Existence of Einstein metrics on Fano manifolds 2012 119 159

[55] Tian, Gang, Zhu, Xiaohua A nonlinear inequality of Moser-Trudinger type Calc. Var. Partial Differential Equations 2000 349 354

[56] Tian, Gang, Zhu, Xiaohua Uniqueness of Kähler-Ricci solitons Acta Math. 2000 271 305

[57] Tian, Gang K-stability and Kähler-Einstein metrics Comm. Pure Appl. Math. 2015 1085 1156

[58] Zeriahi, Ahmed Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions Indiana Univ. Math. J. 2001 671 703

[59] Zhang, Xi, Zhang, Xiangwen Generalized Kähler-Einstein metrics and energy functionals Canad. J. Math. 2014 1413 1435

[60] Zhou, Bin, Zhu, Xiaohua Relative 𝐾-stability and modified 𝐾-energy on toric manifolds Adv. Math. 2008 1327 1362

[61] Zhu, Xiaohua Kähler-Ricci soliton typed equations on compact complex manifolds with 𝐶₁(𝑀)>0 J. Geom. Anal. 2000 759 774

Cité par Sources :