Voir la notice de l'article provenant de la source American Mathematical Society
Darvas, Tamás 1 ; Rubinstein, Yanir 1
@article{10_1090_jams_873,
author = {Darvas, Tam\~A{\textexclamdown}s and Rubinstein, Yanir},
title = {Tian\^as properness conjectures and {Finsler} geometry of the space of {K\~A{\textcurrency}hler} metrics},
journal = {Journal of the American Mathematical Society},
pages = {347--387},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2017},
doi = {10.1090/jams/873},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/873/}
}
TY - JOUR AU - Darvas, Tamás AU - Rubinstein, Yanir TI - Tianâs properness conjectures and Finsler geometry of the space of Kähler metrics JO - Journal of the American Mathematical Society PY - 2017 SP - 347 EP - 387 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/873/ DO - 10.1090/jams/873 ID - 10_1090_jams_873 ER -
%0 Journal Article %A Darvas, Tamás %A Rubinstein, Yanir %T Tianâs properness conjectures and Finsler geometry of the space of Kähler metrics %J Journal of the American Mathematical Society %D 2017 %P 347-387 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/873/ %R 10.1090/jams/873 %F 10_1090_jams_873
Darvas, Tamás; Rubinstein, Yanir. Tianâs properness conjectures and Finsler geometry of the space of Kähler metrics. Journal of the American Mathematical Society, Tome 30 (2017) no. 2, pp. 347-387. doi: 10.1090/jams/873
[1] Réduction du cas positif de lâéquation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration dâune inégalité J. Funct. Anal. 1984 143 153
[2] Some nonlinear problems in Riemannian geometry 1998
[3] , Uniqueness of Einstein Kähler metrics modulo connected group actions 1987 11 40
[4] , A new capacity for plurisubharmonic functions Acta Math. 1982 1 40
[5] A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics Adv. Math. 2013 1254 1297
[6] , Growth of balls of holomorphic sections and energy at equilibrium Invent. Math. 2010 337 394
[7] , , , A variational approach to complex Monge-Ampère equations Publ. Math. Inst. Hautes Ãtudes Sci. 2013 179 245
[8] , , , Monge-Ampère equations in big cohomology classes Acta Math. 2010 199 262
[9] A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry Invent. Math. 2015 149 200
[10] , On regularization of plurisubharmonic functions on manifolds Proc. Amer. Math. Soc. 2007 2089 2093
[11] Lie groups 2004
[12] , , Kähler-Ricci solitons on compact complex manifolds with ð¶â(ð)>0 Geom. Funct. Anal. 2005 697 719
[13] Extremal isosystolic metrics for compact surfaces 1996 167 204
[14] , Asymptotically log Fano varieties Adv. Math. 2015 1241 1300
[15] A new parabolic flow in Kähler manifolds Comm. Anal. Geom. 2004 837 852
[16] The space of Kähler metrics J. Differential Geom. 2000 189 234
[17] , , Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities J. Amer. Math. Soc. 2015 183 197
[18] , Ricci flow and the metric completion of the space of Kähler metrics Amer. J. Math. 2013 1477 1505
[19] The Mabuchi geometry of finite energy classes Adv. Math. 2015 182 219
[20] Remarks on the existence problem of positive Kähler-Einstein metrics Math. Ann. 1988 463 471
[21] Classical algebraic geometry 2012
[22] Symmetric spaces, Kähler geometry and Hamiltonian dynamics 1999 13 33
[23] An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443
[24] , The weighted Monge-Ampère energy of quasiplurisubharmonic functions J. Funct. Anal. 2007 442 482
[25] , Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors J. Differential Geom. 2016 15 57
[26] , , , , Normalizers of compact subgroups, the existence of commuting automorphisms, and applications to operator semistable measures J. Lie Theory 1998 189 209
[27] Differential geometry, Lie groups, and symmetric spaces 2001
[28] , , Kähler-Einstein metrics with edge singularities Ann. of Math. (2) 2016 95 176
[29] The complex Monge-Ampère equation and pluripotential theory Mem. Amer. Math. Soc. 2005
[30] , Conical Kähler-Einstein metrics revisited Comm. Math. Phys. 2014 927 973
[31] Transformations analytiques et isométries dâune variété kählérienne compacte C. R. Acad. Sci. Paris 1958 855 857
[32] Some symplectic geometry on compact Kähler manifolds. I Osaka J. Math. 1987 227 252
[33] Multiplier Hermitian structures on Kähler manifolds Nagoya Math. J. 2003 73 115
[34] Sur la structure du groupe dâhoméomorphismes analytiques dâune certaine variété kählérienne Nagoya Math. J. 1957 145 150
[35] , , Complex Monge-Ampère equations 2012 327 410
[36] , , , The Moser-Trudinger inequality on Kähler-Einstein manifolds Amer. J. Math. 2008 1067 1085
[37] , Lectures on stability and constant scalar curvature 2009 101 176
[38] Geometry VI 2001
[39] On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood J. Funct. Anal. 2008 2641 2660
[40] Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics Adv. Math. 2008 1526 1565
[41] Smooth and singular Kähler-Einstein metrics 2014 45 138
[42] The best constant of the Moser-Trudinger inequality on ð² Trans. Amer. Math. Soc. 2004 3477 3482
[43] Complex Monge-Ampère and symplectic manifolds Amer. J. Math. 1992 495 550
[44] The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group Ann. of Math. (2) 1988 585 627
[45] , Energy functionals and canonical Kähler metrics Duke Math. J. 2007 159 184
[46] , On the convergence and singularities of the ð½-flow with applications to the Mabuchi energy Comm. Pure Appl. Math. 2008 210 229
[47] Long time existence of minimizing movement solutions of Calabi flow Adv. Math. 2014 688 729
[48] Locally compact groups 2006
[49] Notes on GIT and symplectic reduction for bundles and varieties 2006 221 273
[50] The ð¾-energy on hypersurfaces and stability Comm. Anal. Geom. 1994 239 265
[51] Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37
[52] Canonical metrics in Kähler geometry 2000
[53] , Kähler-Einstein metrics on complex surfaces with ð¶â>0 Comm. Math. Phys. 1987 175 203
[54] Existence of Einstein metrics on Fano manifolds 2012 119 159
[55] , A nonlinear inequality of Moser-Trudinger type Calc. Var. Partial Differential Equations 2000 349 354
[56] , Uniqueness of Kähler-Ricci solitons Acta Math. 2000 271 305
[57] K-stability and Kähler-Einstein metrics Comm. Pure Appl. Math. 2015 1085 1156
[58] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions Indiana Univ. Math. J. 2001 671 703
[59] , Generalized Kähler-Einstein metrics and energy functionals Canad. J. Math. 2014 1413 1435
[60] , Relative ð¾-stability and modified ð¾-energy on toric manifolds Adv. Math. 2008 1327 1362
[61] Kähler-Ricci soliton typed equations on compact complex manifolds with ð¶â(ð)>0 J. Geom. Anal. 2000 759 774
Cité par Sources :