@article{10_1090_jams_868,
author = {Williamson, Geordie},
title = {Schubert calculus and torsion explosion},
journal = {Journal of the American Mathematical Society},
pages = {1023--1046},
year = {2017},
volume = {30},
number = {4},
doi = {10.1090/jams/868},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/868/}
}
Williamson, Geordie. Schubert calculus and torsion explosion. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1023-1046. doi: 10.1090/jams/868
[1] , , Quantum groups, the loop Grassmannian, and the Springer resolution J. Amer. Math. Soc. 2004 595 678
[2] , , Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝 Astérisque 1994 321
[3] , , Tilting exercises Mosc. Math. J. 2004
[4] , , Sieving and expanders C. R. Math. Acad. Sci. Paris 2006 155 159
[5] , , Affine linear sieve, expanders, and sum-product Invent. Math. 2010 559 644
[6] , On Zaremba’s conjecture Ann. of Math. (2) 2014 137 196
[7] , Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution Ann. of Math. (2) 2013 835 919
[8] , , Localization of modules for a semisimple Lie algebra in prime characteristic Ann. of Math. (2) 2008 945 991
[9] On the numerical factors of the arithmetic forms 𝛼ⁿ±𝛽ⁿ Ann. of Math. (2) 1913/14 49 70
[10] , The hard Lefschetz theorem and the topology of semismall maps Ann. Sci. École Norm. Sup. (4) 2002 759 772
[11] , The Hodge theory of algebraic maps Ann. Sci. École Norm. Sup. (4) 2005 693 750
[12] On tilting modules for algebraic groups Math. Z. 1993 39 60
[13] The 𝑞-Schur algebra 1998
[14] , Diagrammatics for Soergel categories Int. J. Math. Math. Sci. 2010
[15] The two-color Soergel calculus Compos. Math. 2016 327 398
[16] , The Hodge theory of Soergel bimodules Ann. of Math. (2) 2014 1089 1136
[17] The combinatorics of Coxeter categories Trans. Amer. Math. Soc. 2008 4211 4233
[18] The multiplicity one case of Lusztig’s conjecture Duke Math. J. 2010 551 571
[19] Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture J. Amer. Math. Soc. 2011 133 181
[20] An upper bound on the exceptional characteristics for Lusztig’s character formula J. Reine Angew. Math. 2012 1 31
[21] , A strengthening of a theorem of Bourgain-Kontorovich II Mosc. J. Comb. Number Theory 2014 78 117
[22] , Parity sheaves, moment graphs and the 𝑝-smooth locus of Schubert varieties Ann. Inst. Fourier (Grenoble) 2014 489 536
[23] Polynomial representations of 𝐺𝐿_{𝑛} 1981 124 140
[24] A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets J. Number Theory 1996 9 45
[25] An improvement to Zaremba’s conjecture Geom. Funct. Anal. 2015 860 914
[26] The decomposition matrices of 𝐺𝐿_{𝑛}(𝑞) for 𝑛≤10 Proc. London Math. Soc. (3) 1990 225 265
[27] Moduln mit einem höchsten Gewicht 1979
[28] Representations of algebraic groups 2003
[29] Character formulae from Hermann Weyl to the present 2008 232 270
[30] , , Parity sheaves J. Amer. Math. Soc. 2014 1169 1212
[31] On the Kazhdan-Lusztig polynomials for affine Weyl groups Adv. in Math. 1985 103 130
[32] , Tensor structures arising from affine Lie algebras. I, II J. Amer. Math. Soc. 1993
[33] , Tensor structures arising from affine Lie algebras. III J. Amer. Math. Soc. 1994 335 381
[34] , Tensor structures arising from affine Lie algebras. IV J. Amer. Math. Soc. 1994 383 453
[35] From Apollonius to Zaremba: local-global phenomena in thin orbits Bull. Amer. Math. Soc. (N.S.) 2013 187 228
[36] Levels of distribution and the affine sieve Ann. Fac. Sci. Toulouse Math. (6) 2014 933 966
[37] , Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Duke Math. J. 1995 21 62
[38] , Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case Duke Math. J. 1996 771 813
[39] Presentation of right-angled Soergel categories by generators and relations J. Pure Appl. Algebra 2010 2265 2278
[40] Light leaves and Lusztig’s conjecture Adv. Math. 2015 772 807
[41] Some problems in the representation theory of finite Chevalley groups 1980 313 317
[42] Monodromic systems on affine flag manifolds Proc. Roy. Soc. London Ser. A 1994 231 246
[43] , The affine sieve J. Amer. Math. Soc. 2013 1085 1105
[44] Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe J. Amer. Math. Soc. 1990 421 445
[45] The combinatorics of Harish-Chandra bimodules J. Reine Angew. Math. 1992 49 74
[46] Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules Represent. Theory 1997 83 114
[47] On the relation between intersection cohomology and representation theory in positive characteristic J. Pure Appl. Algebra 2000 311 335
[48] Langlands’ philosophy and Koszul duality 2001 379 414
[49] Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen J. Inst. Math. Jussieu 2007 501 525
[50] , Modular intersection cohomology complexes on flag varieties Math. Z. 2012 697 727
Cité par Sources :