Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_861,
     author = {Darmon, Henri and Rotger, Victor},
     title = {Diagonal cycles and {Euler} systems {II:} {The} {Birch} and {Swinnerton-Dyer} conjecture for {Hasse-Weil-Artin} {\dh}{\textquestiondown}-functions},
     journal = {Journal of the American Mathematical Society},
     pages = {601--672},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2017},
     doi = {10.1090/jams/861},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/861/}
}
                      
                      
                    TY - JOUR AU - Darmon, Henri AU - Rotger, Victor TI - Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin ð¿-functions JO - Journal of the American Mathematical Society PY - 2017 SP - 601 EP - 672 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/861/ DO - 10.1090/jams/861 ID - 10_1090_jams_861 ER -
%0 Journal Article %A Darmon, Henri %A Rotger, Victor %T Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin ð¿-functions %J Journal of the American Mathematical Society %D 2017 %P 601-672 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/861/ %R 10.1090/jams/861 %F 10_1090_jams_861
Darmon, Henri; Rotger, Victor. Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin ð¿-functions. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 601-672. doi: 10.1090/jams/861
[1] , Twists of newforms and pseudo-eigenvalues of ð-operators Invent. Math. 1978 221 243
[2] , On the eigencurve at classical weight 1 points Duke Math. J. 2016 245 266
[3] , A rigid analytic Gross-Zagier formula and arithmetic applications Ann. of Math. (2) 1997 111 147
[4] , Euler systems and Jochnowitz congruences Amer. J. Math. 1999 259 281
[5] , Iwasawaâs main conjecture for elliptic curves over anticyclotomic â¤_{ð¡}-extensions Ann. of Math. (2) 2005 1 64
[6] , , Stark-Heegner points and special values of ð¿-series 2007 1 23
[7] , , Beilinson-Flach elements and Euler systems I: Syntomic regulators and ð-adic Rankin ð¿-series J. Algebraic Geom. 2015 355 378
[8] , , Beilinson-Flach elements and Euler systems II: the Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin ð¿-series J. Algebraic Geom. 2015 569 604
[9] A generalization of Colemanâs ð-adic integration theory Invent. Math. 2000 397 434
[10] , ð¿-functions and Tamagawa numbers of motives 1990 333 400
[11] , Représentations ð-adiques ordinaires de ðºð¿â(ð_{ð©}) et compatibilité local-global Astérisque 2010 255 315
[12] Classical and overconvergent modular forms of higher level J. Théor. Nombres Bordeaux 1997 395 403
[13] , The Frobenius and monodromy operators for curves and abelian varieties Duke Math. J. 1999 171 215
[14] , Hidden structures on semistable curves Astérisque 2010 179 254
[15] Integration on â_{ð }Ãâ and arithmetic applications Ann. of Math. (2) 2001 589 639
[16] , , Fermatâs last theorem 1997 2 140
[17] , , Stark points and ð-adic iterated integrals attached to modular forms of weight one Forum Math. Pi 2015
[18] , Diagonal cycles and Euler systems I: A ð-adic Gross-Zagier formula Ann. Sci. Ãc. Norm. Supér. (4) 2014 779 832
[19] , A first course in modular forms 2005
[20] A new proof of a theorem of Hida Internat. Math. Res. Notices 1999 453 472
[21] Crystalline cohomology and ð-adic Galois-representations 1989 25 80
[22] Crystalline cohomology of semistable curveâthe ð_{ð}-theory J. Algebraic Geom. 1997 1 18
[23] A generalisation of the Cassels-Tate pairing J. Reine Angew. Math. 1990 113 127
[24] Iwasawa theory for ð-adic representations 1989 97 137
[25] , Heegner points and derivatives of ð¿-series Invent. Math. 1986 225 320
[26] A ð-adic measure attached to the zeta functions associated with two elliptic modular forms. I Invent. Math. 1985 159 195
[27] Galois representations into ðºð¿â(ð_{ð}[[ð]]) attached to ordinary cusp forms Invent. Math. 1986 545 613
[28] Elementary theory of ð¿-functions and Eisenstein series 1993
[29] Continuous étale cohomology Math. Ann. 1988 207 245
[30] ð-adic Hodge theory and values of zeta functions of modular forms Astérisque 2004
[31] , Arithmetic moduli of elliptic curves 1985
[32] Finiteness of ð¸(ð) and SH(ð¸,ð) for a subclass of Weil curves Izv. Akad. Nauk SSSR Ser. Mat. 1988
[33] , , Euler systems for Rankin-Selberg convolutions of modular forms Ann. of Math. (2) 2014 653 771
[34] , Iwasawa theory and ð-adic ð¿-functions over â¤_{ð¡}²-extensions Int. J. Number Theory 2014 2045 2095
[35] , , Special values of ð¿-functions and the arithmetic of Darmon points J. Reine Angew. Math. 2013 199 244
[36] , Class fields of abelian extensions of ð Invent. Math. 1984 179 330
[37] Ãtalâ²nye kogomologii 1983 392
[38] ð-adic Abel-Jacobi maps and ð-adic heights 2000 367 379
[39] Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two Canad. J. Math. 2012 588 668
[40] On the ð-adic Eichler-Shimura isomorphism for Î-adic cusp forms J. Reine Angew. Math. 1995 49 98
[41] Trilinear forms for representations of ðºð¿(2) and local ð-factors Compositio Math. 1990 1 46
[42] Modular forms and ð-adic Hodge theory Invent. Math. 1997 607 620
[43] , Vanishing of ð¿-functions and ranks of Selmer groups 2006 473 500
[44] On ordinary ð-adic representations associated to modular forms Invent. Math. 1988 529 573
Cité par Sources :
