Higher order Fourier analysis of multiplicative functions and applications
Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 67-157

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a structure theorem for multiplicative functions which states that an arbitrary multiplicative function of modulus at most $1$ can be decomposed into two terms, one that is approximately periodic and another that has small Gowers uniformity norm of an arbitrary degree. The proof uses tools from higher order Fourier analysis and finitary ergodic theory, and some soft number theoretic input that comes in the form of an orthogonality criterion of Kátai. We use variants of this structure theorem to derive applications of number theoretic and combinatorial flavor: $(i)$ we give simple necessary and sufficient conditions for the Gowers norms (over $\mathbb {N}$) of a bounded multiplicative function to be zero, $(ii)$ generalizing a classical result of Daboussi we prove asymptotic orthogonality of multiplicative functions to “irrational” nilsequences, $(iii)$ we prove that for certain polynomials in two variables all “aperiodic” multiplicative functions satisfy Chowla’s zero mean conjecture, $(iv)$ we give the first partition regularity results for homogeneous quadratic equations in three variables, showing for example that on every partition of the integers into finitely many cells there exist distinct $x,y$ belonging to the same cell and $\lambda \in \mathbb {N}$ such that $16x^2+9y^2=\lambda ^2$, and the same holds for the equation $x^2-xy+y^2=\lambda ^2$.
DOI : 10.1090/jams/857

Frantzikinakis, Nikos 1 ; Host, Bernard 2

1 Department of Mathematics, University of Crete, Voutes University Campus, Heraklion 71003, Greece
2 Laboratoire d’analyse et de mathématiques appliquées, Université Paris-Est Marne-la-Vallée, UMR CNRS 8050, 5 Bd Descartes, 77454 Marne la Vallée Cedex, France
@article{10_1090_jams_857,
     author = {Frantzikinakis, Nikos and Host, Bernard},
     title = {Higher order {Fourier} analysis of multiplicative functions and applications},
     journal = {Journal of the American Mathematical Society},
     pages = {67--157},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2017},
     doi = {10.1090/jams/857},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/857/}
}
TY  - JOUR
AU  - Frantzikinakis, Nikos
AU  - Host, Bernard
TI  - Higher order Fourier analysis of multiplicative functions and applications
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 67
EP  - 157
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/857/
DO  - 10.1090/jams/857
ID  - 10_1090_jams_857
ER  - 
%0 Journal Article
%A Frantzikinakis, Nikos
%A Host, Bernard
%T Higher order Fourier analysis of multiplicative functions and applications
%J Journal of the American Mathematical Society
%D 2017
%P 67-157
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/857/
%R 10.1090/jams/857
%F 10_1090_jams_857
Frantzikinakis, Nikos; Host, Bernard. Higher order Fourier analysis of multiplicative functions and applications. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 67-157. doi: 10.1090/jams/857

[1] Bergelson, Vitaly Ergodic Ramsey theory—an update 1996 1 61

[2] Bergelson, Vitaly Multiplicatively large sets and ergodic Ramsey theory Israel J. Math. 2005 23 40

[3] Bergelson, Vitaly, Host, Bernard, Kra, Bryna Multiple recurrence and nilsequences Invent. Math. 2005 261 303

[4] Bergelson, V., Moreira, J. Ergodic theorem involving additive and multiplicative groups of a field and {x+y,xy} patterns

[5] Bergelson, V., Moreira, J. Measure preserving actions of affine semigroups and {x+y,xy} patterns

[6] Bergelson, V., Leibman, A. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems J. Amer. Math. Soc. 1996 725 753

[7] Bourgain, J., Sarnak, P., Ziegler, T. Disjointness of Moebius from horocycle flows 2013 67 83

[8] Browning, T. D., Prendiville, S. A transference approach to a Roth-type theorem in the squares

[9] Chowla, S. The Riemann hypothesis and Hilbert’s tenth problem 1965

[10] Corwin, Lawrence J., Greenleaf, Frederick P. Representations of nilpotent Lie groups and their applications. Part I 1990

[11] Daboussi, Hã©Di Fonctions multiplicatives presque périodiques B 1975 321 324

[12] Daboussi, Hã©Di, Delange, Hubert Quelques propriétés des fonctions multiplicatives de module au plus égal à 1 C. R. Acad. Sci. Paris Sér. A 1974 657 660

[13] Daboussi, Hã©Di, Delange, Hubert On multiplicative arithmetical functions whose modulus does not exceed one J. London Math. Soc. (2) 1982 245 264

[14] Erdå‘S, P., Graham, R. L. Old and new problems and results in combinatorial number theory 1980 128

[15] Faltings, G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern Invent. Math. 1983 349 366

[16] Friedlander, John, Iwaniec, Henryk The polynomial 𝑋²+𝑌⁴ captures its primes Ann. of Math. (2) 1998 945 1040

[17] Furstenberg, Harry Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Analyse Math. 1977 204 256

[18] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory 1981

[19] Gowers, W. T. A new proof of Szemerédi’s theorem Geom. Funct. Anal. 2001 465 588

[20] Gowers, W. T. Decompositions, approximate structure, transference, and the Hahn-Banach theorem Bull. Lond. Math. Soc. 2010 573 606

[21] Gowers, W. T., Wolf, J. Linear forms and quadratic uniformity for functions on ℤ_{ℕ} J. Anal. Math. 2011 121 186

[22] Gowers, W. T., Wolf, J. Linear forms and higher-degree uniformity for functions on 𝔽ⁿ_{𝕡} Geom. Funct. Anal. 2011 36 69

[23] Graham, Ron Old and new problems and results in Ramsey theory 2008 105 118

[24] Granville, Andrew, Soundararajan, K. Large character sums: pretentious characters and the Pólya-Vinogradov theorem J. Amer. Math. Soc. 2007 357 384

[25] Granville, A., Soundararajan, K. The pretentious approach

[26] Green, Ben, Tao, Terence Quadratic uniformity of the Möbius function Ann. Inst. Fourier (Grenoble) 2008 1863 1935

[27] Green, Ben, Tao, Terence An inverse theorem for the Gowers 𝑈³(𝐺) norm Proc. Edinb. Math. Soc. (2) 2008 73 153

[28] Green, Ben, Tao, Terence An arithmetic regularity lemma, an associated counting lemma, and applications 2010 261 334

[29] Green, Benjamin, Tao, Terence Linear equations in primes Ann. of Math. (2) 2010 1753 1850

[30] Green, Ben, Tao, Terence The quantitative behaviour of polynomial orbits on nilmanifolds Ann. of Math. (2) 2012 465 540

[31] Green, Ben, Tao, Terence The Möbius function is strongly orthogonal to nilsequences Ann. of Math. (2) 2012 541 566

[32] Green, Ben, Tao, Terence, Ziegler, Tamar An inverse theorem for the Gowers 𝑈^{𝑠+1}[𝑁]-norm Ann. of Math. (2) 2012 1231 1372

[33] Gyarmati, Katalin, Ruzsa, Imre Z. A set of squares without arithmetic progressions Acta Arith. 2012 109 115

[34] Halã¡Sz, G. Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen Acta Math. Acad. Sci. Hungar. 1968 365 403

[35] Hall, R. R. A sharp inequality of Halász type for the mean value of a multiplicative arithmetic function Mathematika 1995 144 157

[36] Heath-Brown, D. R. Primes represented by 𝑥³+2𝑦³ Acta Math. 2001 1 84

[37] Heath-Brown, D. R., Moroz, B. Z. Primes represented by binary cubic forms Proc. London Math. Soc. (3) 2002 257 288

[38] Heath-Brown, D. R., Moroz, B. Z. On the representation of primes by cubic polynomials in two variables Proc. London Math. Soc. (3) 2004 289 312

[39] Helfgott, Harald Andres Root numbers and the parity problem 2003 283

[40] Helfgott, H. A. The parity problem for reducible cubic forms J. London Math. Soc. (2) 2006 415 435

[41] Helfgott, H. The parity problem for irreducible polynomials

[42] Henriot, Kevin Logarithmic bounds for translation-invariant equations in squares Int. Math. Res. Not. IMRN 2015 12540 12562

[43] Henriot, K. Additive equations in dense variables, and truncated restriction estimates

[44] Host, Bernard, Kra, Bryna Nonconventional ergodic averages and nilmanifolds Ann. of Math. (2) 2005 397 488

[45] Host, Bernard, Kra, Bryna Uniformity seminorms on ℓ^{∞} and applications J. Anal. Math. 2009 219 276

[46] Kã¡Tai, I. A remark on a theorem of H. Daboussi Acta Math. Hungar. 1986 223 225

[47] Keil, Eugen On a diagonal quadric in dense variables Glasg. Math. J. 2014 601 628

[48] Keil, E. Some refinements for translation invariant quadratic forms in dense sets

[49] Khalfalah, Ayman, Szemerã©Di, Endre On the number of monochromatic solutions of 𝑥+𝑦 Combin. Probab. Comput. 2006 213 227

[50] Lachand, A. Entiers friables et formes binaires

[51] Lachand, A. On the representation of friables by linear forms

[52] Landau, E. Über die Klassenzahl imaginär-quadratischer Zahlkörper Göttinger Nachrichten 1918

[53] Leibman, A. Polynomial sequences in groups J. Algebra 1998 189 206

[54] Leibman, A. Polynomial mappings of groups Israel J. Math. 2002 29 60

[55] Leibman, A. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold Ergodic Theory Dynam. Systems 2005 201 213

[56] Leibman, A. Rational sub-nilmanifolds of a compact nilmanifold Ergodic Theory Dynam. Systems 2006 787 798

[57] Mal′Cev, A. I. On a class of homogeneous spaces Izv. Akad. Nauk SSSR Ser. Mat. 1949 9 32

[58] Matthiesen, Lilian Linear correlations amongst numbers represented by positive definite binary quadratic forms Acta Arith. 2012 235 306

[59] Matthiesen, L. A consequence of the factorisation theorem for polynomial orbits on nilmanifolds. Corrigendum Acta Arith. 2012

[60] Matthiesen, Lilian Correlations of the divisor function Proc. Lond. Math. Soc. (3) 2012 827 858

[61] Matthiesen, Lilian Correlations of representation functions of binary quadratic forms Acta Arith. 2013 245 252

[62] Matthiesen, L. Generalized Fourier coefficients of multiplicative functions

[63] Montgomery, H. L., Vaughan, R. C. Exponential sums with multiplicative coefficients Invent. Math. 1977 69 82

[64] Murty, M. Ram, Esmonde, Jody Problems in algebraic number theory 2005

[65] Neukirch, Jã¼Rgen Algebraic number theory 1999

[66] Rado, Richard Studien zur Kombinatorik Math. Z. 1933 424 470

[67] Sã¡Rkã¶Zy, A. On difference sets of sequences of integers. III Acta Math. Acad. Sci. Hungar. 1978 355 386

[68] Schur, I. Uber die Kongruenz 𝑥^{𝑚}+𝑦^{𝑚} Jahresber. Dtsch. Math.-Ver. 1917

[69] Smith, Matthew L. On solution-free sets for simultaneous quadratic and linear equations J. Lond. Math. Soc. (2) 2009 273 293

[70] Sun, W. A structure theorem for multiplicative functions over the Gaussian integers and applications

[71] Szegedy, B. On higher order Fourier analysis

[72] Tao, Terence A quantitative ergodic theory proof of Szemerédi’s theorem Electron. J. Combin. 2006

[73] Van Der Waerden, B. L. Beweis einer Baudetschen Vermutung Nieuw. Arch. Wisk. 1927

[74] Walters, Mark Combinatorial proofs of the polynomial van der Waerden theorem and the polynomial Hales-Jewett theorem J. London Math. Soc. (2) 2000 1 12

Cité par Sources :