Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_855,
author = {Sun, Binyong},
title = {The nonvanishing hypothesis at infinity for {Rankin-Selberg} convolutions},
journal = {Journal of the American Mathematical Society},
pages = {1--25},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2017},
doi = {10.1090/jams/855},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/855/}
}
TY - JOUR AU - Sun, Binyong TI - The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions JO - Journal of the American Mathematical Society PY - 2017 SP - 1 EP - 25 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/855/ DO - 10.1090/jams/855 ID - 10_1090_jams_855 ER -
Sun, Binyong. The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 1-25. doi: 10.1090/jams/855
[1] , Multiplicity one theorem for (ðºð¿_{ð+1}(â),ð¾ð_{ð}(â)) Selecta Math. (N.S.) 2009 271 294
[2] , Continuous cohomology, discrete subgroups, and representations of reductive groups 2000
[3] , Smooth Fréchet globalizations of Harish-Chandra modules Israel J. Math. 2014 45 111
[4] Canonical extensions of Harish-Chandra modules to representations of ðº Canad. J. Math. 1989 385 438
[5] Motifs et formes automorphes: applications du principe de fonctorialité 1990 77 159
[6] Enveloping algebras 1996
[7] Discrete series for semisimple symmetric spaces Ann. of Math. (2) 1980 253 311
[8] , Whittaker periods, motivic periods, and special values of tensor product L-functions J. Inst. Math. Jussieu 2015
[9] Ãber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung Math. Ann. 1936 664 699
[10] Ãber Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I Math. Ann. 1937 1 28
[11] Ãber Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. II Math. Ann. 1937 316 351
[12] Archimedean Rankin-Selberg integrals 2009 57 172
[13] Modular symbols for reductive groups and ð-adic Rankin-Selberg convolutions over number fields J. Reine Angew. Math. 2011 1 45
[14] On ð-adic ð¿-functions for ðºð¿(ð)Ãðºð¿(ð-1) over totally real fields Int. Math. Res. Not. IMRN 2015 7884 7949
[15] p-adic L-functions for Rankin-Selberg convolutions over number fields
[16] On period relations for automorphic L-functions
[17] , The critical values of Rankin-Selberg convolutions Int. J. Number Theory 2013 205 256
[18] , , Relative modular symbols and Rankin-Selberg convolutions J. Reine Angew. Math. 2000 97 141
[19] Representation theory of semisimple groups 1986
[20] , Cohomological induction and unitary representations 1995
[21] Cohomology of arithmetic groups, parabolic subgroups and the special values of ð¿-functions on ðºð¿_{ð} J. Inst. Math. Jussieu 2005 553 637
[22] , , Representations of complex semi-simple Lie groups and Lie algebras Ann. of Math. (2) 1967 383 429
[23] On the special values of certain Rankin-Selberg ð¿-functions and applications to odd symmetric power ð¿-functions of modular forms Int. Math. Res. Not. IMRN 2010 334 372
[24] Critical values of Rankin-Selberg L-functions for ðºð¿(ð)Ãðºð¿(ð-1) and the symmetric cube L-functions for ðºð¿(2) Forum Math.
[25] , Functoriality and special values of ð¿-functions 2008 271 293
[26] , On certain period relations for cusp forms on ðºð¿_{ð} Int. Math. Res. Not. IMRN 2008
[27] Relative modular symbols and ð-adic Rankin-Selberg convolutions Invent. Math. 1993 31 76
[28] Period relations and ð-adic measures Manuscripta Math. 2001 177 201
[29] Positivity of matrix coefficients of representations with real infinitesimal characters Israel J. Math. 2009 395 410
[30] Bounding matrix coefficients for smooth vectors of tempered representations Proc. Amer. Math. Soc. 2009 353 357
[31] , Multiplicity one theorems: the Archimedean case Ann. of Math. (2) 2012 23 44
[32] Unitarizability of certain series of representations Ann. of Math. (2) 1984 141 187
[33] The unitary dual of ðºð¿(ð) over an Archimedean field Invent. Math. 1986 449 505
[34] , Unitary representations with nonzero cohomology Compositio Math. 1984 51 90
[35] Real reductive groups. I 1988
[36] Real reductive groups. II 1992
[37] On the unitarizability of derived functor modules Invent. Math. 1984 131 141
[38] An analysis of the multiplicity spaces in branching of symplectic groups Selecta Math. (N.S.) 2010 819 855
Cité par Sources :