Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients
Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 27-66

Voir la notice de l'article provenant de la source American Mathematical Society

We study fluctuations of linear statistics corresponding to smooth functions for certain biorthogonal ensembles. We study those biorthogonal ensembles for which the underlying biorthogonal family satisfies a finite term recurrence and describe the asymptotic fluctuations using right limits of the recurrence matrix. As a consequence, we show that whenever the right limit is a Laurent matrix, a central limit theorem holds. We will also discuss the implications for orthogonal polynomial ensembles. In particular, we obtain a central limit theorem for the orthogonal polynomial ensemble associated with any measure belonging to the Nevai class of an interval. Our results also extend previous results on unitary ensembles in the one-cut case. Finally, we will illustrate our results by deriving central limit theorems for the Hahn ensemble for lozenge tilings of a hexagon and for the Hermitian two matrix model.
DOI : 10.1090/jams/854

Breuer, Jonathan 1 ; Duits, Maurice 2

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2 Department of Mathematics, Royal Institute of Technology (KTH), Lindstedtsvägen 25, SE-10044 Stockholm, Sweden
@article{10_1090_jams_854,
     author = {Breuer, Jonathan and Duits, Maurice},
     title = {Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients},
     journal = {Journal of the American Mathematical Society},
     pages = {27--66},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2017},
     doi = {10.1090/jams/854},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/854/}
}
TY  - JOUR
AU  - Breuer, Jonathan
AU  - Duits, Maurice
TI  - Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 27
EP  - 66
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/854/
DO  - 10.1090/jams/854
ID  - 10_1090_jams_854
ER  - 
%0 Journal Article
%A Breuer, Jonathan
%A Duits, Maurice
%T Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients
%J Journal of the American Mathematical Society
%D 2017
%P 27-66
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/854/
%R 10.1090/jams/854
%F 10_1090_jams_854
Breuer, Jonathan; Duits, Maurice. Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. Journal of the American Mathematical Society, Tome 30 (2017) no. 1, pp. 27-66. doi: 10.1090/jams/854

[1] Anderson, Greg W., Guionnet, Alice, Zeitouni, Ofer An introduction to random matrices 2010

[2] Baik, J., Kriecherbauer, T., Mclaughlin, K. T.-R., Miller, P. D. Discrete orthogonal polynomials 2007

[3] Basor, Estelle L., Widom, Harold On a Toeplitz determinant identity of Borodin and Okounkov Integral Equations Operator Theory 2000 397 401

[4] Bertola, M., Eynard, B., Harnad, J. Duality, biorthogonal polynomials and multi-matrix models Comm. Math. Phys. 2002 73 120

[5] Borodin, Alexei Biorthogonal ensembles Nuclear Phys. B 1999 704 732

[6] Borodin, Alexei, Ferrari, Patrik L. Anisotropic growth of random surfaces in 2+1 dimensions Comm. Math. Phys. 2014 603 684

[7] Borodin, Alexei CLT for spectra of submatrices of Wigner random matrices Mosc. Math. J. 2014

[8] Borodin, A., Bufetov, A. A CLT for Plancherel representations of the infinite-dimensional unitary group

[9] Borodin, Alexei, Gorin, Vadim General 𝛽-Jacobi corners process and the Gaussian free field Comm. Pure Appl. Math. 2015 1774 1844

[10] Breuer, Jonathan Sine kernel asymptotics for a class of singular measures J. Approx. Theory 2011 1478 1491

[11] Breuer, Jonathan, Duits, Maurice The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles Adv. Math. 2014 441 484

[12] Breuer, Jonathan, Last, Yoram, Simon, Barry The Nevai condition Constr. Approx. 2010 221 254

[13] Breuer, Jonathan, Simon, Barry Natural boundaries and spectral theory Adv. Math. 2011 4902 4920

[14] Bã¶Ttcher, Albrecht, Silbermann, Bernd Introduction to large truncated Toeplitz matrices 1999

[15] Borodin, Alexei Determinantal point processes 2011 231 249

[16] Costin, Ovidiu, Lebowitz, Joel L. Gaussian fluctuation in random matrices Phys. Rev. Lett. 1995 69 72

[17] Damanik, David, Killip, Rowan, Simon, Barry Perturbations of orthogonal polynomials with periodic recursion coefficients Ann. of Math. (2) 2010 1931 2010

[18] Deift, P. A. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach 1999

[19] Deift, P., Kriecherbauer, T., Mclaughlin, K. T.-R., Venakides, S., Zhou, X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory Comm. Pure Appl. Math. 1999 1335 1425

[20] Deift, P., Kriecherbauer, T., Mclaughlin, K. T-R, Venakides, S., Zhou, X. Strong asymptotics of orthogonal polynomials with respect to exponential weights Comm. Pure Appl. Math. 1999 1491 1552

[21] Denisov, Sergey A. On Rakhmanov’s theorem for Jacobi matrices Proc. Amer. Math. Soc. 2004 847 852

[22] Diaconis, Persi Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture Bull. Amer. Math. Soc. (N.S.) 2003 155 178

[23] Duits, Maurice Gaussian free field in an interlacing particle system with two jump rates Comm. Pure Appl. Math. 2013 600 643

[24] Duits, Maurice, Geudens, Dries, Kuijlaars, Arno B. J. A vector equilibrium problem for the two-matrix model in the quartic/quadratic case Nonlinearity 2011 951 993

[25] Duits, Maurice, Kuijlaars, Arno B. J., Mo, Man Yue The Hermitian two matrix model with an even quartic potential Mem. Amer. Math. Soc. 2012

[26] Dumitriu, Ioana, Paquette, Elliot Global fluctuations for linear statistics of 𝛽-Jacobi ensembles Random Matrices Theory Appl. 2012

[27] Ehrhardt, T. A generalization of Pincus’ formula and Toeplitz operator determinants Arch. Math. (Basel) 2003 302 309

[28] Ercolani, Nicholas M., Mclaughlin, Kenneth T.-R. Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model Phys. D 2001 232 268

[29] Eynard, Bertrand, Mehta, Madan Lal Matrices coupled in a chain. I. Eigenvalue correlations J. Phys. A 1998 4449 4456

[30] Forrester, P. J. Log-gases and random matrices 2010

[31] Gohberg, Israel, Goldberg, Seymour, Krupnik, Nahum Traces and determinants of linear operators 2000

[32] Hough, J. Ben, Krishnapur, Manjunath, Peres, Yuval, Virã¡G, Bã¡Lint Determinantal processes and independence Probab. Surv. 2006 206 229

[33] Johansson, Kurt On random matrices from the compact classical groups Ann. of Math. (2) 1997 519 545

[34] Johansson, Kurt On fluctuations of eigenvalues of random Hermitian matrices Duke Math. J. 1998 151 204

[35] Johansson, Kurt Non-intersecting paths, random tilings and random matrices Probab. Theory Related Fields 2002 225 280

[36] Johansson, Kurt Random matrices and determinantal processes 2006 1 55

[37] Kiselev, Alexander, Last, Yoram, Simon, Barry Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators Comm. Math. Phys. 1998 1 45

[38] Koekoek, Roelof, Lesky, Peter A., Swarttouw, Ren㩠F. Hypergeometric orthogonal polynomials and their 𝑞-analogues 2010

[39] Kriecherbauer, T., Shcherbina, M. Fluctuations of eigenvalues of matrix models and their applications

[40] Kuijlaars, Arno B. J. Multiple orthogonal polynomial ensembles 2010 155 176

[41] Kuijlaars, A. B. J., Van Assche, W. The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients J. Approx. Theory 1999 167 197

[42] Kã¶Nig, Wolfgang Orthogonal polynomial ensembles in probability theory Probab. Surv. 2005 385 447

[43] Last, Yoram Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments 2005 99 120

[44] Last, Yoram, Simon, Barry Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators Invent. Math. 1999 329 367

[45] Last, Yoram, Simon, Barry The essential spectrum of Schrödinger, Jacobi, and CMV operators J. Anal. Math. 2006 183 220

[46] Lyons, Russell Determinantal probability measures Publ. Math. Inst. Hautes Études Sci. 2003 167 212

[47] Naä­Man, P. B. On the theory of periodic and limit-periodic Jacobian matrices Dokl. Akad. Nauk SSSR 1962 277 279

[48] Naä­Man, P. B. On the spectral theory of non-symmetric periodic Jacobi matrices Zap. Meh.-Mat. Fak. Har′kov. Gos. Univ. i Har′kov. Mat. Obšč. (4) 1964 138 151

[49] Pastur, L. Limiting laws of linear eigenvalue statistics for Hermitian matrix models J. Math. Phys. 2006

[50] Pastur, Leonid, Shcherbina, Mariya Eigenvalue distribution of large random matrices 2011

[51] Pearson, D. B. Singular continuous measures in scattering theory Comm. Math. Phys. 1978 13 36

[52] Petrov, Leonid Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field Ann. Probab. 2015 1 43

[53] Rakhmanov, E. A. On the asymptotics of the ratio of orthogonal polynomials Math. USSR Sb. 1977

[54] Rakhmanov, E. A. On the asymptotics of the ratio of orthogonal polynomials II Math. USSR Sb. 1983

[55] Reed, Michael, Simon, Barry Methods of modern mathematical physics. IV. Analysis of operators 1978

[56] Remling, Christian The absolutely continuous spectrum of Jacobi matrices Ann. of Math. (2) 2011 125 171

[57] Shcherbina, M. Fluctuations of linear eigenvalue statistics of 𝛽 matrix models in the multi-cut regime J. Stat. Phys. 2013 1004 1034

[58] Simon, Barry Trace ideals and their applications 2005

[59] Simon, Barry Szegő’s theorem and its descendants 2011

[60] Soshnikov, Alexander B. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields J. Statist. Phys. 2000 491 522

[61] Soshnikov, Alexander Gaussian limit for determinantal random point fields Ann. Probab. 2002 171 187

[62] Soshnikov, A. Determinantal random point fields Uspekhi Mat. Nauk 2000 107 160

[63] Soshnikov, A. Determinantal random point fields

[64] Stahl, H., Totik, V. General Orthogonal Polynomials

[65] The Oxford handbook of random matrix theory 2011

Cité par Sources :