On a problem by Steklov
Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1117-1165

Voir la notice de l'article provenant de la source American Mathematical Society

Given any $\delta \in (0,1)$, we define the Steklov class $S_\delta$ to be the set of probability measures $\sigma$ on the unit circle $\mathbb {T}$, such that $\sigma ’(\theta )\geqslant \delta /(2\pi )>0$ for Lebesgue almost every $\theta \in [0,2\pi )$. One can define the orthonormal polynomials $\phi _n(z)$ with respect to $\sigma \in S_\delta$. In this paper, we obtain the sharp estimates on the uniform norms $\|\phi _n\|_{L^\infty (\mathbb T)}$ as $n\to \infty$ which settles a question asked by Steklov in 1921. As an important intermediate step, we consider the following variational problem. Fix $n\in \mathbb N$ and define $M_{n,\delta }=\sup \limits _{\sigma \in S_\delta }\|\phi _n\|_{L^\infty (\mathbb T)}$. Then, we prove \[ C(\delta )\sqrt n M_{n,\delta }\leqslant \sqrt {\frac {n+1}\delta } . \] A new method is developed that can be used to study other important variational problems. For instance, we prove the sharp estimates for the polynomial entropy in the Steklov class.
DOI : 10.1090/jams/853

Aptekarev, A. 1 ; Denisov, S. 2 ; Tulyakov, D. 1

1 Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, 125047 Moscow, Russia
2 Mathematics Department, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, Wisconsin 53706; and Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, 125047 Moscow, Russia
@article{10_1090_jams_853,
     author = {Aptekarev, A. and Denisov, S. and Tulyakov, D.},
     title = {On a problem by {Steklov}},
     journal = {Journal of the American Mathematical Society},
     pages = {1117--1165},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/853},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/853/}
}
TY  - JOUR
AU  - Aptekarev, A.
AU  - Denisov, S.
AU  - Tulyakov, D.
TI  - On a problem by Steklov
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 1117
EP  - 1165
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/853/
DO  - 10.1090/jams/853
ID  - 10_1090_jams_853
ER  - 
%0 Journal Article
%A Aptekarev, A.
%A Denisov, S.
%A Tulyakov, D.
%T On a problem by Steklov
%J Journal of the American Mathematical Society
%D 2016
%P 1117-1165
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/853/
%R 10.1090/jams/853
%F 10_1090_jams_853
Aptekarev, A.; Denisov, S.; Tulyakov, D. On a problem by Steklov. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1117-1165. doi: 10.1090/jams/853

[1] Ambroladze, M. U. On the possible rate of growth of polynomials that are orthogonal with a continuous positive weight Mat. Sb. 1991 332 353

[2] Aptekarev, A. I., Buyarov, V. S., Degeza, I. S. Asymptotic behavior of 𝐿^{𝑝}-norms and entropy for general orthogonal polynomials Mat. Sb. 1994 3 30

[3] Aptekarev, A. I., Dehesa, J. S., Martinez-Finkelshtein, A. Asymptotics of orthogonal polynomial’s entropy J. Comput. Appl. Math. 2010 1355 1365

[4] Andrews, George E., Askey, Richard, Roy, Ranjan Special functions 1999

[5] Beckermann, B., Martã­Nez-Finkelshtein, A., Rakhmanov, E. A., Wielonsky, F. Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class J. Math. Phys. 2004 4239 4254

[6] Bernstein, S. Sur les polynomes orthogonaux relatifs 𝑎̀ un segment fini J. Mathem𝑎́tiques, 1930

[7] Denisov, S. On the size of the polynomials orthonormal on the unit circle with respect to a measure which is a sum of the Lebesgue measure and 𝑝 point masses

[8] Denisov, S., Kupin, S. On the growth of the polynomial entropy integrals for measures in the Szegő class Adv. Math. 2013 18 32

[9] Duren, P. Theory of 𝐻^{𝑝} Spaces 2000

[10] Geronimus, Ya. L. Polynomials Orthogonal on the Circle and on the Interval 1960

[11] Geronä«Mus, Ja. L. Some estimates of orthogonal polynomials and the problem of Steklov Dokl. Akad. Nauk SSSR 1977 14 17

[12] Geronimus, Ja. L. The relation between the order of growth of orthonormal polynomials and their weight function Mat. Sb. (N.S.) 1963 65 79

[13] Geronimus, Ja. L. On a conjecture of V. A. Steklov Dokl. Akad. Nauk SSSR 1962 507 509

[14] Golinskiä­, B. L. The problem of V. A. Steklov in the theory of orthogonal polynomials Mat. Zametki 1974 21 32

[15] Ismail, Mourad E. H. Classical and quantum orthogonal polynomials in one variable 2005

[16] Kroã³, A., Lubinsky, D. S. Christoffel functions and universality in the bulk for multivariate orthogonal polynomials Canad. J. Math. 2013 600 620

[17] Lubinsky, Doron S. A new approach to universality limits involving orthogonal polynomials Ann. of Math. (2) 2009 915 939

[18] Mã¡Tã©, Attila, Nevai, Paul, Totik, Vilmos Szegő’s extremum problem on the unit circle Ann. of Math. (2) 1991 433 453

[19] Nevai, Paul G. Orthogonal polynomials Mem. Amer. Math. Soc. 1979

[20] Nevai, Paul, Zhang, John, Totik, Vilmos Orthogonal polynomials: their growth relative to their sums J. Approx. Theory 1991 215 234

[21] Pã³Lya, George, Szegå‘, Gã¡Bor Problems and theorems in analysis. I 1978

[22] Rahmanov, E. A. Steklov’s conjecture in the theory of orthogonal polynomials Mat. Sb. (N.S.) 1979

[23] Rahmanov, E. A. Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero Mat. Sb. (N.S.) 1981

[24] Szegå‘, G. Orthogonal Polynomials 1975

[25] Simon, B. Orthogonal polynomials on the unit circle, Vols. 1 and 2 2005

[26] Steklov, V. A. Une methode de la solution du probleme de development des fonctions en series de polynomes de Tchebysheff independante de la theorie de fermeture Izv. Rus. Ac. Sci. 1921

[27] Suetin, P. K. V. A. Steklov’s problem in the theory of orthogonal polynomials 1977 5 82

[28] Totik, Vilmos Christoffel functions on curves and domains Trans. Amer. Math. Soc. 2010 2053 2087

[29] Totik, Vilmos Asymptotics for Christoffel functions for general measures on the real line J. Anal. Math. 2000 283 303

[30] Zygmund, A. Trigonometric series. Vol. I, II 2002

Cité par Sources :