Voir la notice de l'article provenant de la source American Mathematical Society
Fefferman, Charles 1 ; Mitter, Sanjoy 2 ; Narayanan, Hariharan 3
@article{10_1090_jams_852,
author = {Fefferman, Charles and Mitter, Sanjoy and Narayanan, Hariharan},
title = {Testing the manifold hypothesis},
journal = {Journal of the American Mathematical Society},
pages = {983--1049},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2016},
doi = {10.1090/jams/852},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/852/}
}
TY - JOUR AU - Fefferman, Charles AU - Mitter, Sanjoy AU - Narayanan, Hariharan TI - Testing the manifold hypothesis JO - Journal of the American Mathematical Society PY - 2016 SP - 983 EP - 1049 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/852/ DO - 10.1090/jams/852 ID - 10_1090_jams_852 ER -
%0 Journal Article %A Fefferman, Charles %A Mitter, Sanjoy %A Narayanan, Hariharan %T Testing the manifold hypothesis %J Journal of the American Mathematical Society %D 2016 %P 983-1049 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/852/ %R 10.1090/jams/852 %F 10_1090_jams_852
Fefferman, Charles; Mitter, Sanjoy; Narayanan, Hariharan. Testing the manifold hypothesis. Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 983-1049. doi: 10.1090/jams/852
[1] , Methods of information geometry 2000
[2] , Random projections of smooth manifolds Found. Comput. Math. 2009 51 77
[3] , Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 2003
[4] , , Manifold reconstruction in arbitrary dimensions using witness complexes Discrete Comput. Geom. 2009 37 70
[5] , , Introduction to statistical learning theory 2004 169 207
[6] , ð-plane clustering J. Global Optim. 2000 23 32
[7] Charting a manifold NIPS 2002
[8] , , Learning manifolds with k-means and k-flats 2013
[9] Topology and data Bull. Amer. Math. Soc. (N.S.) 2009 255 308
[10] , , Manifold reconstruction from point samples 2005 1018 1027
[11] , , , Manifold estimation and singular deconvolution under Hausdorff loss Ann. Statist. 2012 941 963
[12] , , , Minimax manifold estimation J. Mach. Learn. Res. 2012
[13] Tighter bounds for random projections of manifolds 2008 39 48
[14] , , , , , , Geometric diffusions as a tool for harmonic analysis and structure definition of data. Part II: Multiscale methods Proc. Natl. Acad. Sci. USA 2005
[15] , Multidimensional scaling 1994
[16] , Random projection trees and low dimensional manifolds 2008 537 546
[17] , Analysis of and on uniformly rectifiable sets 1993
[18] , , A probabilistic theory of pattern recognition 1996
[19] , Hessian eigenmaps: locally linear embedding techniques for high-dimensional data Proc. Natl. Acad. Sci. USA 2003 5591 5596
[20] Uniform central limit theorems 1999
[21] Curvature measures Trans. Amer. Math. Soc. 1959 418 491
[22] Interpolation and extrapolation of smooth functions by linear operators Rev. Mat. Iberoamericana 2005 313 348
[23] The ð¶^{ð} norm of a function with prescribed jets. II Rev. Mat. Iberoam. 2009 275 421
[24] , , , Nonparametric ridge estimation Ann. Statist. 2014 1511 1545
[25] , Principal curves J. Amer. Statist. Assoc. 1989 502 516
[26] Analysis of a complex of statistical variables into principal components J. Educational Psychology 1933
[27] , Approximation of points on low-dimensional manifolds via random linear projections Inf. Inference 2013 1 31
[28] , Extensions of Lipschitz mappings into a Hilbert space 1984 189 206
[29] , , Universal local parametrizations via heat kernels and eigenfunctions of the Laplacian Ann. Acad. Sci. Fenn. Math. 2010 131 174
[30] , Fast non-linear dimension reduction 1993
[31] , , , Learning and design of principal curves IEEE Trans. Pattern Analysis and Machine Intelligence 2000
[32] The concentration of measure phenomenon 2001
[33] , Robust recovery of multiple subspaces by geometric ð_{ð} minimization Ann. Statist. 2011 2686 2715
[34] Manifold learning theory and applications 2012
[35] , Topology representing networks Neural Netw. 1994
[36] Some applications of concentration inequalities to statistics Ann. Fac. Sci. Toulouse Math. (6) 2000 245 303
[37] , ð¾-dimensional coding schemes in Hilbert spaces IEEE Trans. Inform. Theory 2010 5839 5846
[38] Lectures on topics in analysis 1965
[39] , On the sample complexity of testing the manifold hypothesis NIPS 2010
[40] , On the sample complexity of learning smooth cuts on a manifol
[41] Infinite-dimensional manifolds of finite-entropy probability measures 2013 713 720
[42] , , Finding the homology of submanifolds with high confidence from random samples Discrete Comput. Geom. 2008 419 441
[43] , Locally defined principal curves and surfaces J. Mach. Learn. Res. 2011 1249 1286
[44] On lines and planes of closest fit to systems of points in space Philos. Mag. 1901
[45] , , Global coordination of local linear models Adv. Neural Inf. Process. Syst. 2002
[46] , Nonlinear dimensionality reduction by locally linear embedding Science 2000
[47] , Combinatorics of random processes and sections of convex bodies Ann. of Math. (2) 2006 603 648
[48] , Kernel methods for pattern analysis 2004
[49] , , , Regularized principal manifolds 1999 214 229
[50] , Note on refined Dudley integral covering number bound
[51] , , A Global Geometric Framework for Nonlinear Dimensionality Reduction Science 2000
[52] A new algorithm for minimizing convex functions over convex sets Math. Programming 1996 291 341
[53] Estimation of dependences based on empirical data 1982
[54] , Unsupervised learning of image manifolds by semidefinite programming Int. J. Comput. Vision 2006
[55] , Principal manifolds and nonlinear dimensionality reduction via tangent space alignment SIAM J. Sci. Comput. 2004 313 338
Cité par Sources :