Voir la notice de l'article provenant de la source American Mathematical Society
Gautam, Sachin 1 ; Toledano Laredo, Valerio 2
@article{10_1090_jams_851,
author = {Gautam, Sachin and Toledano Laredo, Valerio},
title = {Yangians, quantum loop algebras, and abelian difference equations},
journal = {Journal of the American Mathematical Society},
pages = {775--824},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2016},
doi = {10.1090/jams/851},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/851/}
}
TY - JOUR AU - Gautam, Sachin AU - Toledano Laredo, Valerio TI - Yangians, quantum loop algebras, and abelian difference equations JO - Journal of the American Mathematical Society PY - 2016 SP - 775 EP - 824 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/851/ DO - 10.1090/jams/851 ID - 10_1090_jams_851 ER -
%0 Journal Article %A Gautam, Sachin %A Toledano Laredo, Valerio %T Yangians, quantum loop algebras, and abelian difference equations %J Journal of the American Mathematical Society %D 2016 %P 775-824 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/851/ %R 10.1090/jams/851 %F 10_1090_jams_851
Gautam, Sachin; Toledano Laredo, Valerio. Yangians, quantum loop algebras, and abelian difference equations. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 775-824. doi: 10.1090/jams/851
[1] Exactly solved models in statistical mechanics 1982
[2] Trigonometric solutions of triangle equations and classical Lie algebras Phys. Lett. B 1985 321 324
[3] Integrable quantum systems and classical Lie algebras Comm. Math. Phys. 1987 471 503
[4] , , , , Baxter ð-operators and representations of Yangians Nuclear Phys. B 2011 148 174
[5] , Finite-dimensional representations of quantum affine algebras at roots of unity J. Amer. Math. Soc. 1996 391 423
[6] General theory of linear difference equations Trans. Amer. Math. Soc. 1911 243 284
[7] The generalized Riemann problem for linear differential equations and allied problems for linear difference and ð-difference equations Proc. Amer. Acad. Arts Sci. 1913
[8] Isomonodromy transformations of linear systems of difference equations Ann. of Math. (2) 2004 1141 1182
[9] , Yangians and ð -matrices Enseign. Math. (2) 1990 267 302
[10] , Quantum affine algebras Comm. Math. Phys. 1991 261 283
[11] , A guide to quantum groups 1994
[12] , Quantum affine algebras and their representations 1995 59 78
[13] Double affine Hecke algebras 2005
[14] Hopf algebras and the quantum Yang-Baxter equation Dokl. Akad. Nauk SSSR 1985 1060 1064
[15] Quantum groups 1987 798 820
[16] A new realization of Yangians and of quantum affine algebras Dokl. Akad. Nauk SSSR 1987 13 17
[17] , Linear operators. Part I. General theory 1958
[18] , On highest weight modules over elliptic quantum groups Lett. Math. Phys. 1999 179 188
[19] , On the quantum Kazhdan-Lusztig functor Math. Res. Lett. 2002 449 463
[20] Integrable models in (1+1)-dimensional quantum field theory 1984 561 608
[21] , , , , Quantum continuous ð¤ð©_{â}: semiinfinite construction of representations Kyoto J. Math. 2011 337 364
[22] Conformal field theory and integrable systems associated to elliptic curves 1995 1247 1255
[23] , Baxterâs relations and spectra of quantum integrable models Duke Math. J. 2015 2407 2460
[24] , The ð-characters of representations of quantum affine algebras and deformations of ð²-algebras 1999 163 205
[25] , Quantum affine algebras and holonomic difference equations Comm. Math. Phys. 1992 1 60
[26] , Yangians and quantum loop algebras Selecta Math. (N.S.) 2013 271 336
[27] , Meromorphic Kazhdan-Lusztig equivalence for Yangians and quantum loop algebras
[28] , Elliptic quantum groups and their finiteâdimensional representations
[29] Geometric methods in the representation theory of Hecke algebras and quantum groups 1998 127 183
[30] , From quantum loop algebras to Yangians J. Lond. Math. Soc. (2) 2012 683 700
[31] Algebraic approach to ð,ð¡-characters Adv. Math. 2004 1 52
[32] Representations of quantum affinizations and fusion product Transform. Groups 2005 163 200
[33] Drinfeld coproduct, quantum fusion tensor category and applications Proc. Lond. Math. Soc. (3) 2007 567 608
[34] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds Adv. Math. 2009 1016 1079
[35] , , , Quasi-Hopf twistors for elliptic quantum groups Transform. Groups 1999 303 327
[36] Infinite-dimensional Lie algebras 1990
[37] Spectra of tensor products of finite-dimensional representations of Yangians J. Algebra 1995 187 196
[38] Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem Uspekhi Mat. Nauk 2004 111 150
[39] On generators and defining relations of Yangians J. Geom. Phys. 1993 1 11
[40] Affine Hecke algebras and their graded version J. Amer. Math. Soc. 1989 599 635
[41] Introduction to quantum groups 1993
[42] , Quantum Groups and Quantum Cohomology
[43] A (ð,ð¾) analog of the ð_{1+â} algebra J. Math. Phys. 2007
[44] Quiver varieties and finite-dimensional representations of quantum affine algebras J. Amer. Math. Soc. 2001 145 238
[45] , The quantum differential equation of the Hilbert scheme of points in the plane Transform. Groups 2010 965 982
[46] , The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials Compos. Math. 2011 188 234
[47] Form factors in completely integrable models of quantum field theory 1992
[48] Solutions of the triangle equations with ð_{ð}Ãð_{ð}-symmetry and matrix analogues of the Weierstrass zeta and sigma functions Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1984 258 276
[49] The Affine Yangian of gl1 and the Infinitesimal Cherednik Algebras 2014
[50] , Galois theory of difference equations 1997
[51] Quiver varieties and Yangians Lett. Math. Phys. 2000 273 283
[52] , A course of modern analysis 1996
Cité par Sources :