Yangians, quantum loop algebras, and abelian difference equations
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 775-824

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\mathfrak {g}$ be a complex, semisimple Lie algebra, and $Y_\hbar (\mathfrak {g})$ and $U_q(L\mathfrak {g})$ the Yangian and quantum loop algebra of $\mathfrak {g}$. Assuming that $\hbar$ is not a rational number and that $q= e^{\pi i\hbar }$, we construct an equivalence between the finite-dimensional representations of $U_q(L\mathfrak {g})$ and an explicit subcategory of those of $Y_\hbar (\mathfrak {g})$ defined by choosing a branch of the logarithm. This equivalence is governed by the monodromy of the abelian, additive difference equations defined by the commuting fields of $Y_\hbar (\mathfrak {g})$. Our results are compatible with $q$-characters, and apply more generally to a symmetrizable Kac-Moody algebra $\mathfrak {g}$, in particular to affine Yangians and quantum toroïdal algebras. In this generality, they yield an equivalence between the representations of $Y_\hbar (\mathfrak {g})$ and $U_q(L\mathfrak {g})$ whose restriction to $\mathfrak {g}$ and $U_q\mathfrak {g}$, respectively, are integrable and in category $\mathcal {O}$.
DOI : 10.1090/jams/851

Gautam, Sachin 1 ; Toledano Laredo, Valerio 2

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
2 Department of Mathematics, Northeastern University, 567 Lake Hall, 360 Huntington Avenue, Boston, Massachusetts 02115
@article{10_1090_jams_851,
     author = {Gautam, Sachin and Toledano Laredo, Valerio},
     title = {Yangians, quantum loop algebras, and abelian difference equations},
     journal = {Journal of the American Mathematical Society},
     pages = {775--824},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/851},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/851/}
}
TY  - JOUR
AU  - Gautam, Sachin
AU  - Toledano Laredo, Valerio
TI  - Yangians, quantum loop algebras, and abelian difference equations
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 775
EP  - 824
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/851/
DO  - 10.1090/jams/851
ID  - 10_1090_jams_851
ER  - 
%0 Journal Article
%A Gautam, Sachin
%A Toledano Laredo, Valerio
%T Yangians, quantum loop algebras, and abelian difference equations
%J Journal of the American Mathematical Society
%D 2016
%P 775-824
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/851/
%R 10.1090/jams/851
%F 10_1090_jams_851
Gautam, Sachin; Toledano Laredo, Valerio. Yangians, quantum loop algebras, and abelian difference equations. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 775-824. doi: 10.1090/jams/851

[1] Baxter, Rodney J. Exactly solved models in statistical mechanics 1982

[2] Bazhanov, V. V. Trigonometric solutions of triangle equations and classical Lie algebras Phys. Lett. B 1985 321 324

[3] Bazhanov, V. V. Integrable quantum systems and classical Lie algebras Comm. Math. Phys. 1987 471 503

[4] Bazhanov, Vladimir V., Frassek, Rouven, ŁUkowski, Tomasz, Meneghelli, Carlo, Staudacher, Matthias Baxter 𝑄-operators and representations of Yangians Nuclear Phys. B 2011 148 174

[5] Beck, Jonathan, Kac, Victor G. Finite-dimensional representations of quantum affine algebras at roots of unity J. Amer. Math. Soc. 1996 391 423

[6] Birkhoff, George D. General theory of linear difference equations Trans. Amer. Math. Soc. 1911 243 284

[7] Birkhoff,George D. The generalized Riemann problem for linear differential equations and allied problems for linear difference and 𝑞-difference equations Proc. Amer. Acad. Arts Sci. 1913

[8] Borodin, Alexei Isomonodromy transformations of linear systems of difference equations Ann. of Math. (2) 2004 1141 1182

[9] Chari, Vyjayanthi, Pressley, Andrew Yangians and 𝑅-matrices Enseign. Math. (2) 1990 267 302

[10] Chari, Vyjayanthi, Pressley, Andrew Quantum affine algebras Comm. Math. Phys. 1991 261 283

[11] Chari, Vyjayanthi, Pressley, Andrew A guide to quantum groups 1994

[12] Chari, Vyjayanthi, Pressley, Andrew Quantum affine algebras and their representations 1995 59 78

[13] Cherednik, Ivan Double affine Hecke algebras 2005

[14] Drinfel′D, V. G. Hopf algebras and the quantum Yang-Baxter equation Dokl. Akad. Nauk SSSR 1985 1060 1064

[15] Drinfel′D, V. G. Quantum groups 1987 798 820

[16] Drinfel′D, V. G. A new realization of Yangians and of quantum affine algebras Dokl. Akad. Nauk SSSR 1987 13 17

[17] Dunford, N., Schwartz, J. T. Linear operators. Part I. General theory 1958

[18] Etingof, Pavel, Schiffmann, Olivier On highest weight modules over elliptic quantum groups Lett. Math. Phys. 1999 179 188

[19] Etingof, Pavel I., Moura, Adriano A. On the quantum Kazhdan-Lusztig functor Math. Res. Lett. 2002 449 463

[20] Faddeev, Ludvig Integrable models in (1+1)-dimensional quantum field theory 1984 561 608

[21] Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E. Quantum continuous 𝔤𝔩_{∞}: semiinfinite construction of representations Kyoto J. Math. 2011 337 364

[22] Felder, Giovanni Conformal field theory and integrable systems associated to elliptic curves 1995 1247 1255

[23] Frenkel, Edward, Hernandez, David Baxter’s relations and spectra of quantum integrable models Duke Math. J. 2015 2407 2460

[24] Frenkel, Edward, Reshetikhin, Nicolai The 𝑞-characters of representations of quantum affine algebras and deformations of 𝒲-algebras 1999 163 205

[25] Frenkel, I. B., Reshetikhin, N. Yu. Quantum affine algebras and holonomic difference equations Comm. Math. Phys. 1992 1 60

[26] Gautam, Sachin, Toledano Laredo, Valerio Yangians and quantum loop algebras Selecta Math. (N.S.) 2013 271 336

[27] Gautam, Sachin, Laredo, Valerio Toledano Meromorphic Kazhdan-Lusztig equivalence for Yangians and quantum loop algebras

[28] Gautam, Sachin, Laredo, Valerio Toledano Elliptic quantum groups and their finite–dimensional representations

[29] Ginzburg, Victor Geometric methods in the representation theory of Hecke algebras and quantum groups 1998 127 183

[30] Guay, N., Ma, X. From quantum loop algebras to Yangians J. Lond. Math. Soc. (2) 2012 683 700

[31] Hernandez, David Algebraic approach to 𝑞,𝑡-characters Adv. Math. 2004 1 52

[32] Hernandez, David Representations of quantum affinizations and fusion product Transform. Groups 2005 163 200

[33] Hernandez, David Drinfeld coproduct, quantum fusion tensor category and applications Proc. Lond. Math. Soc. (3) 2007 567 608

[34] Iritani, Hiroshi An integral structure in quantum cohomology and mirror symmetry for toric orbifolds Adv. Math. 2009 1016 1079

[35] Jimbo, M., Konno, H., Odake, S., Shiraishi, J. Quasi-Hopf twistors for elliptic quantum groups Transform. Groups 1999 303 327

[36] Kac, Victor G. Infinite-dimensional Lie algebras 1990

[37] Knight, Harold Spectra of tensor products of finite-dimensional representations of Yangians J. Algebra 1995 187 196

[38] Krichever, I. M. Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem Uspekhi Mat. Nauk 2004 111 150

[39] Levendorskiä­, S. Z. On generators and defining relations of Yangians J. Geom. Phys. 1993 1 11

[40] Lusztig, George Affine Hecke algebras and their graded version J. Amer. Math. Soc. 1989 599 635

[41] Lusztig, George Introduction to quantum groups 1993

[42] Maulik, D., Okounkov, A. Quantum Groups and Quantum Cohomology

[43] Miki, Kei A (𝑞,𝛾) analog of the 𝑊_{1+∞} algebra J. Math. Phys. 2007

[44] Nakajima, Hiraku Quiver varieties and finite-dimensional representations of quantum affine algebras J. Amer. Math. Soc. 2001 145 238

[45] Okounkov, A., Pandharipande, R. The quantum differential equation of the Hilbert scheme of points in the plane Transform. Groups 2010 965 982

[46] Schiffmann, O., Vasserot, E. The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials Compos. Math. 2011 188 234

[47] Smirnov, F. A. Form factors in completely integrable models of quantum field theory 1992

[48] Takhtadzhyan, L. A. Solutions of the triangle equations with 𝑍_{𝑛}×𝑍_{𝑛}-symmetry and matrix analogues of the Weierstrass zeta and sigma functions Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1984 258 276

[49] Tsymbaliuk, Oleksandr The Affine Yangian of gl1 and the Infinitesimal Cherednik Algebras 2014

[50] Van Der Put, Marius, Singer, Michael F. Galois theory of difference equations 1997

[51] Varagnolo, Michela Quiver varieties and Yangians Lett. Math. Phys. 2000 273 283

[52] Whittaker, E. T., Watson, G. N. A course of modern analysis 1996

Cité par Sources :