Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_849,
     author = {Oh, Hee and Winter, Dale},
     title = {Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of {\dh}{\dh}{\textquestiondown}\^a(\^a{\textcurrency})},
     journal = {Journal of the American Mathematical Society},
     pages = {1069--1115},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/849},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/849/}
}
                      
                      
                    TY - JOUR AU - Oh, Hee AU - Winter, Dale TI - Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of ðð¿â(â¤) JO - Journal of the American Mathematical Society PY - 2016 SP - 1069 EP - 1115 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/849/ DO - 10.1090/jams/849 ID - 10_1090_jams_849 ER -
%0 Journal Article %A Oh, Hee %A Winter, Dale %T Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of ðð¿â(â¤) %J Journal of the American Mathematical Society %D 2016 %P 1069-1115 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/849/ %R 10.1090/jams/849 %F 10_1090_jams_849
Oh, Hee; Winter, Dale. Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of ðð¿â(â¤). Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1069-1115. doi: 10.1090/jams/849
[1] , , Exponential mixing for the Teichmüller flow Publ. Math. Inst. Hautes Ãtudes Sci. 2006 143 211
[2] On the mixing property for hyperbolic systems Israel J. Math. 2002 61 76
[3] , The ergodic theory of Axiom A flows Invent. Math. 1975 181 202
[4] Spectral theory of infinite-area hyperbolic surfaces 2007
[5] Markov partitions for Axiom ð´ diffeomorphisms Amer. J. Math. 1970 725 747
[6] Geometrical finiteness with variable negative curvature Duke Math. J. 1995 229 274
[7] , Uniform expansion bounds for Cayley graphs of ðð¿â(ð½_{ð¡}) Ann. of Math. (2) 2008 625 642
[8] , , Generalization of Selbergâs \frac{3}16 theorem and affine sieve Acta Math. 2011 255 290
[9] , , Affine linear sieve, expanders, and sum-product Invent. Math. 2010 559 644
[10] , On Zarembaâs conjecture Ann. of Math. (2) 2014 137 196
[11] , , Thermodynamic expansion to arbitrary moduli
[12] , , Sector estimates for hyperbolic isometries Geom. Funct. Anal. 2010 1175 1200
[13] All Fuchsian Schottky groups are classical Schottky groups 1998 117 125
[14] , Expansion in ðð¿_{ð}(ð/ðð),ð arbitrary Invent. Math. 2012 151 173
[15] Invariant measures for hyperbolic dynamical systems 2002 321 407
[16] Théorie spectrale des surfaces de Riemann dâaire infinite Astérisque 1985
[17] On decay of correlations in Anosov flows Ann. of Math. (2) 1998 357 390
[18] Handbook of Dynamical Systems, 1A 2002
[19] , Expansion in perfect groups Geom. Funct. Anal. 2012 1832 1891
[20] , Wave decay on convex co-compact hyperbolic manifolds Comm. Math. Phys. 2009 489 511
[21] , , The Selberg zeta function for convex co-compact Schottky groups Comm. Math. Phys. 2004 149 176
[22] , Effective circle count for Apollonian packings and closed horospheres Geom. Funct. Anal. 2013 580 621
[23] , The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces J. Functional Analysis 1982 280 350
[24] , , Expanding maps and continued fractions
[25] , Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature J. Funct. Anal. 1987 260 310
[26] , , Closed geodesics and holonomies for Kleinian manifolds Geom. Funct. Anal. 2014 1608 1636
[27] , Matrix coefficients, counting and primes for orbits of geometrically finite groups J. Eur. Math. Soc. (JEMS) 2015 837 897
[28] Expanding maps on Cantor sets and analytic continuation of zeta functions Ann. Sci. Ãcole Norm. Sup. (4) 2005 116 153
[29] , Equidistribution and counting for orbits of geometrically finite hyperbolic groups J. Amer. Math. Soc. 2013 511 562
[30] , Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268
[31] The limit set of a Fuchsian group Acta Math. 1976 241 273
[32] On a lattice-point problem in hyperbolic space and related questions in spectral theory Ark. Mat. 1988 167 172
[33] On the rate of mixing of Axiom A flows Invent. Math. 1985 413 426
[34] , Spectral estimates for Ruelle transfer operators with two parameters and applications
[35] Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003
[36] Markov partitions for Anosov flows on ð-dimensional manifolds Israel J. Math. 1973 92 114
[37] Ergodic behaviour of Sullivanâs geometric measure on a geometrically finite hyperbolic manifold Ergodic Theory Dynam. Systems 1982
[38] Equidistribution of the horocycles of a geometrically finite surface Int. Math. Res. Not. 2005 2447 2471
[39] Spectra of Ruelle transfer operators for axiom A flows Nonlinearity 2011 1089 1120
[40] On the Ruelle-Perron-Frobenius theorem Asymptot. Anal. 2005 131 150
[41] The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Ãtudes Sci. Publ. Math. 1979 171 202
[42] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277
[43] Effective bisector estimate with application to Apollonian circle packings Int. Math. Res. Not. IMRN 2014 3217 3262
[44] The Laplace Transform 1941
Cité par Sources :
