Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of 𝑆𝐿₂(ℤ)
Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1069-1115

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\Gamma \operatorname {SL}_2(\mathbb {Z})$ be a non-elementary finitely generated subgroup and let $\Gamma (q)$ be its congruence subgroup of level $q$ for each $q\in \mathbb N$. We obtain an asymptotic formula for the matrix coefficients of $L^2(\Gamma (q) \backslash \operatorname {SL}_2(\mathbb {R}))$ with a uniform exponential error term for all square free $q$ with no small prime divisors. As an application we establish a uniform resonance free half plane for the resolvent of the Laplacian on $\Gamma (q)\backslash \mathbb {H}^2$ over $q$ as above. Our approach is to extend Dolgopyat’s dynamical proof of exponential mixing of the geodesic flow uniformly over congruence covers, by establishing uniform spectral bounds for congruence transfer operators associated to the geodesic flow. One of the key ingredients is the expander theory due to Bourgain-Gamburd-Sarnak.
DOI : 10.1090/jams/849

Oh, Hee 1 ; Winter, Dale 2

1 Mathematics Department, Yale University, New Haven, Connecticut 06511 and Korea Institute for Advanced Study, Seoul, Korea
2 Department of Mathematics, Brown University, Providence, Rhode Island 02906
@article{10_1090_jams_849,
     author = {Oh, Hee and Winter, Dale},
     title = {Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of {\dh}‘†{\dh}{\textquestiondown}\^a‚‚(\^a„{\textcurrency})},
     journal = {Journal of the American Mathematical Society},
     pages = {1069--1115},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2016},
     doi = {10.1090/jams/849},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/849/}
}
TY  - JOUR
AU  - Oh, Hee
AU  - Winter, Dale
TI  - Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of 𝑆𝐿₂(ℤ)
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 1069
EP  - 1115
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/849/
DO  - 10.1090/jams/849
ID  - 10_1090_jams_849
ER  - 
%0 Journal Article
%A Oh, Hee
%A Winter, Dale
%T Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of 𝑆𝐿₂(ℤ)
%J Journal of the American Mathematical Society
%D 2016
%P 1069-1115
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/849/
%R 10.1090/jams/849
%F 10_1090_jams_849
Oh, Hee; Winter, Dale. Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of 𝑆𝐿₂(ℤ). Journal of the American Mathematical Society, Tome 29 (2016) no. 4, pp. 1069-1115. doi: 10.1090/jams/849

[1] Avila, Artur, Gouã«Zel, Sã©Bastien, Yoccoz, Jean-Christophe Exponential mixing for the Teichmüller flow Publ. Math. Inst. Hautes Études Sci. 2006 143 211

[2] Babillot, Martine On the mixing property for hyperbolic systems Israel J. Math. 2002 61 76

[3] Bowen, Rufus, Ruelle, David The ergodic theory of Axiom A flows Invent. Math. 1975 181 202

[4] Borthwick, David Spectral theory of infinite-area hyperbolic surfaces 2007

[5] Bowen, Rufus Markov partitions for Axiom 𝐴 diffeomorphisms Amer. J. Math. 1970 725 747

[6] Bowditch, B. H. Geometrical finiteness with variable negative curvature Duke Math. J. 1995 229 274

[7] Bourgain, Jean, Gamburd, Alex Uniform expansion bounds for Cayley graphs of 𝑆𝐿₂(𝔽_{𝕡}) Ann. of Math. (2) 2008 625 642

[8] Bourgain, Jean, Gamburd, Alex, Sarnak, Peter Generalization of Selberg’s \frac{3}16 theorem and affine sieve Acta Math. 2011 255 290

[9] Bourgain, Jean, Gamburd, Alex, Sarnak, Peter Affine linear sieve, expanders, and sum-product Invent. Math. 2010 559 644

[10] Bourgain, Jean, Kontorovich, Alex On Zaremba’s conjecture Ann. of Math. (2) 2014 137 196

[11] Bourgain, Jean, Kontorovich, Alex, Magee, Michael Thermodynamic expansion to arbitrary moduli

[12] Bourgain, Jean, Kontorovich, Alex, Sarnak, Peter Sector estimates for hyperbolic isometries Geom. Funct. Anal. 2010 1175 1200

[13] Button, Jack All Fuchsian Schottky groups are classical Schottky groups 1998 117 125

[14] Bourgain, Jean, Varjãº, Pã©Ter P. Expansion in 𝑆𝐿_{𝑑}(𝑍/𝑞𝑍),𝑞 arbitrary Invent. Math. 2012 151 173

[15] Chernov, N. Invariant measures for hyperbolic dynamical systems 2002 321 407

[16] Colin De Verdiere, Yves Théorie spectrale des surfaces de Riemann d’aire infinite Astérisque 1985

[17] Dolgopyat, Dmitry On decay of correlations in Anosov flows Ann. of Math. (2) 1998 357 390

[18] Handbook of Dynamical Systems, 1A 2002

[19] Golsefidy, A. Salehi, Varjãº, Pã©Ter P. Expansion in perfect groups Geom. Funct. Anal. 2012 1832 1891

[20] Guillarmou, Colin, Naud, Frã©Dã©Ric Wave decay on convex co-compact hyperbolic manifolds Comm. Math. Phys. 2009 489 511

[21] Guillopã©, Laurent, Lin, Kevin K., Zworski, Maciej The Selberg zeta function for convex co-compact Schottky groups Comm. Math. Phys. 2004 149 176

[22] Lee, Min, Oh, Hee Effective circle count for Apollonian packings and closed horospheres Geom. Funct. Anal. 2013 580 621

[23] Lax, Peter D., Phillips, Ralph S. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces J. Functional Analysis 1982 280 350

[24] Magee, Michael, Oh, Hee, Winter, Dale Expanding maps and continued fractions

[25] Mazzeo, Rafe R., Melrose, Richard B. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature J. Funct. Anal. 1987 260 310

[26] Margulis, Gregory, Mohammadi, Amir, Oh, Hee Closed geodesics and holonomies for Kleinian manifolds Geom. Funct. Anal. 2014 1608 1636

[27] Mohammadi, Amir, Oh, Hee Matrix coefficients, counting and primes for orbits of geometrically finite groups J. Eur. Math. Soc. (JEMS) 2015 837 897

[28] Naud, Frã©Dã©Ric Expanding maps on Cantor sets and analytic continuation of zeta functions Ann. Sci. École Norm. Sup. (4) 2005 116 153

[29] Oh, Hee, Shah, Nimish A. Equidistribution and counting for orbits of geometrically finite hyperbolic groups J. Amer. Math. Soc. 2013 511 562

[30] Parry, William, Pollicott, Mark Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque 1990 268

[31] Patterson, S. J. The limit set of a Fuchsian group Acta Math. 1976 241 273

[32] Patterson, S. J. On a lattice-point problem in hyperbolic space and related questions in spectral theory Ark. Mat. 1988 167 172

[33] Pollicott, Mark On the rate of mixing of Axiom A flows Invent. Math. 1985 413 426

[34] Pektov, Vesselin, Stoyanov, Luchezar Spectral estimates for Ruelle transfer operators with two parameters and applications

[35] Roblin, Thomas Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003

[36] Ratner, M. Markov partitions for Anosov flows on 𝑛-dimensional manifolds Israel J. Math. 1973 92 114

[37] Rudolph, Daniel J. Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold Ergodic Theory Dynam. Systems 1982

[38] Schapira, Barbara Equidistribution of the horocycles of a geometrically finite surface Int. Math. Res. Not. 2005 2447 2471

[39] Stoyanov, Luchezar Spectra of Ruelle transfer operators for axiom A flows Nonlinearity 2011 1089 1120

[40] Stoyanov, Luchezar On the Ruelle-Perron-Frobenius theorem Asymptot. Anal. 2005 131 150

[41] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[42] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277

[43] Vinogradov, Ilya Effective bisector estimate with application to Apollonian circle packings Int. Math. Res. Not. IMRN 2014 3217 3262

[44] Widder, David Vernon The Laplace Transform 1941

Cité par Sources :