Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_844,
     author = {Viale, Matteo},
     title = {Category forcings, {\dh}{\dh}\^a{\textordmasculine}\^a{\textordmasculine}\^a{\textordmasculine}, and generic absoluteness for the theory of strong forcing axioms},
     journal = {Journal of the American Mathematical Society},
     pages = {675--728},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/844},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/844/}
}
                      
                      
                    TY - JOUR AU - Viale, Matteo TI - Category forcings, ððâºâºâº, and generic absoluteness for the theory of strong forcing axioms JO - Journal of the American Mathematical Society PY - 2016 SP - 675 EP - 728 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/844/ DO - 10.1090/jams/844 ID - 10_1090_jams_844 ER -
%0 Journal Article %A Viale, Matteo %T Category forcings, ððâºâºâº, and generic absoluteness for the theory of strong forcing axioms %J Journal of the American Mathematical Society %D 2016 %P 675-728 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/844/ %R 10.1090/jams/844 %F 10_1090_jams_844
Viale, Matteo. Category forcings, ððâºâºâº, and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 675-728. doi: 10.1090/jams/844
[1] Coding into ð»(ðâ), together (or not) with forcing axioms. A survey 2008 23 46
[2] , , Forcing axioms and the continuum hypothesis Acta Math. 2013 1 29
[3] All âµâ-dense sets of reals can be isomorphic Fund. Math. 1973 101 106
[4] Precipitous towers of normal filters J. Symbolic Logic 1997 741 754
[5] , The bounded proper forcing axiom and well orderings of the reals Math. Res. Lett. 2006 393 408
[6] PFA and ideals on ðâ whose associated forcings are proper Notre Dame J. Form. Log. 2012 397 412
[7] All automorphisms of the Calkin algebra are inner Ann. of Math. (2) 2011 619 661
[8] Ideals and generic elementary embeddings 2010 885 1147
[9] , , Martinâs maximum, saturated ideals, and nonregular ultrafilters. I Ann. of Math. (2) 1988 1 47
[10] Donderâs version of revised countable support 1992
[11] , The modal logic of forcing Trans. Amer. Math. Soc. 2008 1793 1817
[12] Set theory 2003
[13] , Resurrection axioms and uplifting cardinals Arch. Math. Logic 2014 463 485
[14] , Incompatible Ω-complete theories J. Symbolic Logic 2009 1155 1170
[15] The stationary tower 2004
[16] Martinâs maximum and definability in ð»(âµâ) Ann. Pure Appl. Logic 2008 110 122
[17] Forcing over models of determinacy 2010 2121 2177
[18] Set mapping reflection J. Math. Log. 2005 87 97
[19] A five element basis for the uncountable linear orders Ann. of Math. (2) 2006 669 688
[20] Infinite abelian groups, Whitehead problem and some constructions Israel J. Math. 1974 243 256
[21] Decomposing uncountable squares to countably many chains J. Combinatorial Theory Ser. A 1976 110 114
[22] Basis problems in combinatorial set theory Doc. Math. 1998 43 52
[23] Generic absoluteness and the continuum Math. Res. Lett. 2002 465 471
[24] The power et of ðâ and the continuum problem 2014
[25] Large cardinals and resurrection axioms 2012
[26] Forcing axioms and stationary sets Adv. Math. 1992 256 284
[27] A family of covering properties Math. Res. Lett. 2008 221 238
[28] Martinâs maximum revisited 2013
[29] , Absoluteness via resurrection 2014
[30] , , A boolean algebraic approach to semiproper iterations 2013
[31] , On the consistency strength of the proper forcing axiom Adv. Math. 2011 2672 2687
[32] The axiom of determinacy, forcing axioms, and the nonstationary ideal 1999
Cité par Sources :
