Category forcings, 𝑀𝑀⁺⁺⁺, and generic absoluteness for the theory of strong forcing axioms
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 675-728

Voir la notice de l'article provenant de la source American Mathematical Society

We analyze certain subfamilies of the category of complete boolean algebras with complete homomorphisms, families which are of particular interest in set theory. In particular we study the category whose objects are stationary set preserving, atomless complete boolean algebras and whose arrows are complete homomorphisms with a stationary set preserving quotient. We introduce a maximal forcing axiom $\text {\textsf {MM}}^{+++}$ as a combinatorial property of this category. This forcing axiom strengthens Martin’s maximum and can be seen at the same time as a strenghtening of Baire’s category theorem and of the axiom of choice. Our main results show that $\text {\textsf {MM}}^{+++}$ is consistent relative to large cardinal axioms and that $\text {\textsf {MM}}^{+++}$ makes the theory of the Chang model $L([\text {\textrm {Ord}}]^{\leq \aleph _1})$ with parameters in $P(\omega _1)$ generically invariant for stationary set preserving forcings that preserve this axiom. We also show that our results give a close to optimal extension to the Chang model $L([\text {\textrm {Ord}}]^{\leq \aleph _1})$ of Woodin’s generic absoluteness results for the Chang model $L([\text {\textrm {Ord}}]^{\aleph _0})$ and give an a posteriori explanation of the success forcing axioms have met in set theory.
DOI : 10.1090/jams/844

Viale, Matteo 1

1 Department of Mathematics “Giuseppe Peano”, University of Torino, via Carlo Alberto 10, 10125, Torino, Italy
@article{10_1090_jams_844,
     author = {Viale, Matteo},
     title = {Category forcings, {\dh}‘€{\dh}‘€\^a{\textordmasculine}\^a{\textordmasculine}\^a{\textordmasculine}, and generic absoluteness for the theory of strong forcing axioms},
     journal = {Journal of the American Mathematical Society},
     pages = {675--728},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/844},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/844/}
}
TY  - JOUR
AU  - Viale, Matteo
TI  - Category forcings, 𝑀𝑀⁺⁺⁺, and generic absoluteness for the theory of strong forcing axioms
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 675
EP  - 728
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/844/
DO  - 10.1090/jams/844
ID  - 10_1090_jams_844
ER  - 
%0 Journal Article
%A Viale, Matteo
%T Category forcings, 𝑀𝑀⁺⁺⁺, and generic absoluteness for the theory of strong forcing axioms
%J Journal of the American Mathematical Society
%D 2016
%P 675-728
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/844/
%R 10.1090/jams/844
%F 10_1090_jams_844
Viale, Matteo. Category forcings, 𝑀𝑀⁺⁺⁺, and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 675-728. doi: 10.1090/jams/844

[1] Asperã³, David Coding into 𝐻(𝜔₂), together (or not) with forcing axioms. A survey 2008 23 46

[2] Asperã³, David, Larson, Paul, Moore, Justin Tatch Forcing axioms and the continuum hypothesis Acta Math. 2013 1 29

[3] Baumgartner, James E. All ℵ₁-dense sets of reals can be isomorphic Fund. Math. 1973 101 106

[4] Burke, Douglas R. Precipitous towers of normal filters J. Symbolic Logic 1997 741 754

[5] Caicedo, Andrã©S Eduardo, Velicì†Koviä‡, Boban The bounded proper forcing axiom and well orderings of the reals Math. Res. Lett. 2006 393 408

[6] Cox, Sean PFA and ideals on 𝜔₂ whose associated forcings are proper Notre Dame J. Form. Log. 2012 397 412

[7] Farah, Ilijas All automorphisms of the Calkin algebra are inner Ann. of Math. (2) 2011 619 661

[8] Foreman, Matthew Ideals and generic elementary embeddings 2010 885 1147

[9] Foreman, M., Magidor, M., Shelah, S. Martin’s maximum, saturated ideals, and nonregular ultrafilters. I Ann. of Math. (2) 1988 1 47

[10] Fuchs, U. Donder’s version of revised countable support 1992

[11] Hamkins, Joel David, Lã¶We, Benedikt The modal logic of forcing Trans. Amer. Math. Soc. 2008 1793 1817

[12] Jech, Thomas Set theory 2003

[13] Hamkins, Joel David, Johnstone, Thomas A. Resurrection axioms and uplifting cardinals Arch. Math. Logic 2014 463 485

[14] Koellner, Peter, Woodin, W. Hugh Incompatible Ω-complete theories J. Symbolic Logic 2009 1155 1170

[15] Larson, Paul B. The stationary tower 2004

[16] Larson, Paul B. Martin’s maximum and definability in 𝐻(ℵ₂) Ann. Pure Appl. Logic 2008 110 122

[17] Larson, Paul B. Forcing over models of determinacy 2010 2121 2177

[18] Moore, Justin Tatch Set mapping reflection J. Math. Log. 2005 87 97

[19] Moore, Justin Tatch A five element basis for the uncountable linear orders Ann. of Math. (2) 2006 669 688

[20] Shelah, Saharon Infinite abelian groups, Whitehead problem and some constructions Israel J. Math. 1974 243 256

[21] Shelah, Saharon Decomposing uncountable squares to countably many chains J. Combinatorial Theory Ser. A 1976 110 114

[22] Todorcevic, Stevo Basis problems in combinatorial set theory Doc. Math. 1998 43 52

[23] Todorcevic, Stevo Generic absoluteness and the continuum Math. Res. Lett. 2002 465 471

[24] TodoräEviä‡, S. The power et of 𝜔₁ and the continuum problem 2014

[25] Tsaprounis, K. Large cardinals and resurrection axioms 2012

[26] Velicì†Koviä‡, Boban Forcing axioms and stationary sets Adv. Math. 1992 256 284

[27] Viale, Matteo A family of covering properties Math. Res. Lett. 2008 221 238

[28] Viale, Matteo Martin’s maximum revisited 2013

[29] Viale, M., Audrito, G. Absoluteness via resurrection 2014

[30] Viale, M., Audrito, G., Steila, S. A boolean algebraic approach to semiproper iterations 2013

[31] Viale, Matteo, WeiãŸ, Christoph On the consistency strength of the proper forcing axiom Adv. Math. 2011 2672 2687

[32] Woodin, W. Hugh The axiom of determinacy, forcing axioms, and the nonstationary ideal 1999

Cité par Sources :