The circle method and bounds for 𝐿-functions—III: 𝑡-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions
Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 913-938

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb {Z})$. In this paper we will prove the following subconvex bound: \[ L\left (\tfrac {1}{2}+it,\pi \right )\ll _{\pi ,\varepsilon } (1+|t|)^{\frac {3}{4}-\frac {1}{16}+\varepsilon }. \]
DOI : 10.1090/jams/843

Munshi, Ritabrata 1

1 School of Mathematics, Tata Institute of Fundamental Research, 1 Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
@article{10_1090_jams_843,
     author = {Munshi, Ritabrata},
     title = {The circle method and bounds for {{\dh}{\textquestiondown}-functions\^a€”III:} {\dh}‘{\textexclamdown}-aspect subconvexity for {\dh}{\textordmasculine}{\dh}{\textquestiondown}(3) {\dh}{\textquestiondown}-functions},
     journal = {Journal of the American Mathematical Society},
     pages = {913--938},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2015},
     doi = {10.1090/jams/843},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/843/}
}
TY  - JOUR
AU  - Munshi, Ritabrata
TI  - The circle method and bounds for 𝐿-functions—III: 𝑡-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 913
EP  - 938
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/843/
DO  - 10.1090/jams/843
ID  - 10_1090_jams_843
ER  - 
%0 Journal Article
%A Munshi, Ritabrata
%T The circle method and bounds for 𝐿-functions—III: 𝑡-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions
%J Journal of the American Mathematical Society
%D 2015
%P 913-938
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/843/
%R 10.1090/jams/843
%F 10_1090_jams_843
Munshi, Ritabrata. The circle method and bounds for 𝐿-functions—III: 𝑡-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 913-938. doi: 10.1090/jams/843

[1] Blomer, Valentin Subconvexity for twisted 𝐿-functions on 𝐺𝐿(3) Amer. J. Math. 2012 1385 1421

[2] Goldfeld, Dorian Automorphic forms and 𝐿-functions for the group 𝐺𝐿(𝑛,𝐑) 2006

[3] Good, Anton The square mean of Dirichlet series associated with cusp forms Mathematika 1982

[4] Huxley, M. N. On stationary phase integrals Glasgow Math. J. 1994 355 362

[5] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[6] Jacquet, Hervã©, Shalika, Joseph Rankin-Selberg convolutions: Archimedean theory 1990 125 207

[7] Li, Xiaoqing Bounds for 𝐺𝐿(3)×𝐺𝐿(2) 𝐿-functions and 𝐺𝐿(3) 𝐿-functions Ann. of Math. (2) 2011 301 336

[8] Miller, Stephen D., Schmid, Wilfried Automorphic distributions, 𝐿-functions, and Voronoi summation for 𝐺𝐿(3) Ann. of Math. (2) 2006 423 488

[9] Munshi, Ritabrata Bounds for twisted symmetric square 𝐿-functions J. Reine Angew. Math. 2013 65 88

[10] Munshi, R. Bounds for twisted symmetric square 𝐿-functions—II

[11] Munshi, Ritabrata Bounds for twisted symmetric square 𝐿-functions—III Adv. Math. 2013 74 91

[12] Munshi, Ritabrata The circle method and bounds for 𝐿-functions—I Math. Ann. 2014 389 401

[13] Munshi, Ritabrata The circle method and bounds for 𝐿-functions—II: Subconvexity for twists of 𝐺𝐿(3) 𝐿-functions Amer. J. Math. 2015

[14] Srinivasan, B. R. The lattice point problem of many dimensional hyperboloids. III Math. Ann. 1965 280 311

[15] Weyl, H. Zur Abschätzung von 𝜁(1+𝑡𝑖) Math. Z. 1921

Cité par Sources :