Rank-finiteness for modular categories
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 857-881

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many modular categories of any fixed rank. Our technical advance is a generalization of the Cauchy theorem in group theory to the context of spherical fusion categories. For a modular category $\mathcal {C}$ with $N= \textrm {ord}(T)$, the order of the modular $T$-matrix, the Cauchy theorem says that the set of primes dividing the global quantum dimension $D^2$ in the Dedekind domain $\mathbb {Z}[e^{\frac {2\pi i}{N}}]$ is identical to that of $N$.
DOI : 10.1090/jams/842

Bruillard, Paul 1, 2 ; Ng, Siu-Hung 3 ; Rowell, Eric 1 ; Wang, Zhenghan 4

1 Department of Mathematics, Texas A&M University, College Station, Texas 77843
2 Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
3 Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
4 Microsoft Research Station Q and Department of Mathematics, University of California, Santa Barbara, California 93106
@article{10_1090_jams_842,
     author = {Bruillard, Paul and Ng, Siu-Hung and Rowell, Eric and Wang, Zhenghan},
     title = {Rank-finiteness for modular categories},
     journal = {Journal of the American Mathematical Society},
     pages = {857--881},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/842},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/842/}
}
TY  - JOUR
AU  - Bruillard, Paul
AU  - Ng, Siu-Hung
AU  - Rowell, Eric
AU  - Wang, Zhenghan
TI  - Rank-finiteness for modular categories
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 857
EP  - 881
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/842/
DO  - 10.1090/jams/842
ID  - 10_1090_jams_842
ER  - 
%0 Journal Article
%A Bruillard, Paul
%A Ng, Siu-Hung
%A Rowell, Eric
%A Wang, Zhenghan
%T Rank-finiteness for modular categories
%J Journal of the American Mathematical Society
%D 2016
%P 857-881
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/842/
%R 10.1090/jams/842
%F 10_1090_jams_842
Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric; Wang, Zhenghan. Rank-finiteness for modular categories. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 857-881. doi: 10.1090/jams/842

[1] Bakalov, Bojko, Kirillov, Alexander, Jr. Lectures on tensor categories and modular functors 2001

[2] Bantay, Peter The Frobenius-Schur indicator in conformal field theory Phys. Lett. B 1997 87 88

[3] Bantay, P. The kernel of the modular representation and the Galois action in RCFT Comm. Math. Phys. 2003 423 438

[4] De Boer, Jan, Goeree, Jacob Markov traces and 𝐼𝐼₁ factors in conformal field theory Comm. Math. Phys. 1991 267 304

[5] Britnell, John R. A formal identity involving commuting triples of permutations J. Combin. Theory Ser. A 2013 941 943

[6] Bruguiã¨Res, A. Catégories Prémodulaires, Modularisations et Invariants des Variétés de Dimension 3 Math. Ann. 2000

[7] Burciu, Sebastian, Natale, Sonia Fusion rules of equivariantizations of fusion categories J. Math. Phys. 2013

[8] Burnell, F. J., Chen, X., Fidowski, L., Vishwanath, A. Exactly Soluble Models of a 3D Symmetry Protected Topological Phase of Bosons with Surface Topological Order

[9] Burns, J. M., Goldsmith, B. Maximal order abelian subgroups of symmetric groups Bull. London Math. Soc. 1989 70 72

[10] Cohen, Henri Advanced topics in computational number theory 2000

[11] Coste, A., Gannon, T. Remarks on Galois symmetry in rational conformal field theories Phys. Lett. B 1994 316 321

[12] Davidovich, C., Hagge, T., Wang, Z. On Arithmetic Modular Categories

[13] Deligne, P. Catégories tensorielles Mosc. Math. J. 2002 227 248

[14] Dong, C., Lin, X., Ng, S.-H. Congruence Property in Conformal Field Theory

[15] Drinfeld, Vladimir, Gelaki, Shlomo, Nikshych, Dmitri, Ostrik, Victor On braided fusion categories. I Selecta Math. (N.S.) 2010 1 119

[16] Etingof, Pavel On some properties of quantum doubles of finite groups J. Algebra 2013 1 6

[17] Etingof, Pavel On Vafa’s theorem for tensor categories Math. Res. Lett. 2002 651 657

[18] Etingof, P.

[19] Etingof, Pavel, Gelaki, Shlomo Descent and forms of tensor categories Int. Math. Res. Not. IMRN 2012 3040 3063

[20] Etingof, Pavel, Gelaki, Shlomo Some properties of finite-dimensional semisimple Hopf algebras Math. Res. Lett. 1998 191 197

[21] Etingof, Pavel, Gelaki, Shlomo, Ostrik, Viktor Classification of fusion categories of dimension 𝑝𝑞 Int. Math. Res. Not. 2004 3041 3056

[22] Etingof, Pavel, Nikshych, Dmitri, Ostrik, Victor Fusion categories and homotopy theory Quantum Topol. 2010 209 273

[23] Etingof, Pavel, Nikshych, Dmitri, Ostrik, Viktor On fusion categories Ann. of Math. (2) 2005 581 642

[24] Evans, David E., Kawahigashi, Yasuyuki Quantum symmetries on operator algebras 1998

[25] Evertse, Jan-Hendrik On sums of 𝑆-units and linear recurrences Compositio Math. 1984 225 244

[26] Evertse, Jan-Hendrik The number of solutions of decomposable form equations Invent. Math. 1995 559 601

[27] Fuchs, J., Ganchev, A. Ch., Szlachã¡Nyi, K., Vecsernyã©S, P. 𝑆₄ symmetry of 6𝑗 symbols and Frobenius-Schur indicators in rigid monoidal 𝐶* categories J. Math. Phys. 1999 408 426

[28] Gelaki, Shlomo, Nikshych, Dmitri Nilpotent fusion categories Adv. Math. 2008 1053 1071

[29] Huang, Yi-Zhi Vertex operator algebras, the Verlinde conjecture, and modular tensor categories Proc. Natl. Acad. Sci. USA 2005 5352 5356

[30] Joyal, Andrã©, Street, Ross Braided tensor categories Adv. Math. 1993 20 78

[31] Kashina, Yevgenia, Sommerhã¤User, Yorck, Zhu, Yongchang On higher Frobenius-Schur indicators Mem. Amer. Math. Soc. 2006

[32] Kassel, Christian Quantum groups 1995

[33] Landau, Edmund Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante Math. Ann. 1903 671 676

[34] Linchenko, V., Montgomery, S. A Frobenius-Schur theorem for Hopf algebras Algebr. Represent. Theory 2000 347 355

[35] Liu, F., Wang, Z., You, Y.-Z., Wen, X.-G. Quantum fidelity, modular transformations, and topological orders in two dimensions

[36] Maclane, Saunders Categories for the working mathematician 1971

[37] Mason, Geoffrey, Ng, Siu-Hung Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras Adv. Math. 2005 161 195

[38] Moore, Gregory, Seiberg, Nathan Classical and quantum conformal field theory Comm. Math. Phys. 1989 177 254

[39] Mã¼Ger, Michael From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors J. Pure Appl. Algebra 2003 159 219

[40] Mã¼Ger, Michael On the structure of modular categories Proc. London Math. Soc. (3) 2003 291 308

[41] Naidu, Deepak, Rowell, Eric C. A finiteness property for braided fusion categories Algebr. Represent. Theory 2011 837 855

[42] Ng, Siu-Hung, Schauenburg, Peter Central invariants and higher indicators for semisimple quasi-Hopf algebras Trans. Amer. Math. Soc. 2008 1839 1860

[43] Ng, Siu-Hung, Schauenburg, Peter Congruence subgroups and generalized Frobenius-Schur indicators Comm. Math. Phys. 2010 1 46

[44] Ng, Siu-Hung, Schauenburg, Peter Frobenius-Schur indicators and exponents of spherical categories Adv. Math. 2007 34 71

[45] Ng, Siu-Hung, Schauenburg, Peter Higher Frobenius-Schur indicators for pivotal categories 2007 63 90

[46] Ostrik, Victor On formal codegrees of fusion categories Math. Res. Lett. 2009 895 901

[47] Ostrik, Viktor Module categories over the Drinfeld double of a finite group Int. Math. Res. Not. 2003 1507 1520

[48] Reshetikhin, N., Turaev, V. G. Invariants of 3-manifolds via link polynomials and quantum groups Invent. Math. 1991 547 597

[49] Rowell, Eric, Stong, Richard, Wang, Zhenghan On classification of modular tensor categories Comm. Math. Phys. 2009 343 389

[50] Schauenburg, Peter On the Frobenius-Schur indicators for quasi-Hopf algebras J. Algebra 2004 129 139

[51] Sommerhã¤User, Yorck, Zhu, Yongchang Hopf algebras and congruence subgroups Mem. Amer. Math. Soc. 2012

[52] Turaev, V. G. Quantum invariants of knots and 3-manifolds 1994

[53] Turaev, Vladimir G. Modular categories and 3-manifold invariants Internat. J. Modern Phys. B 1992 1807 1824

[54] Vafa, Cumrun Toward classification of conformal theories Phys. Lett. B 1988 421 426

[55] Walker, K, Wang, Z. (3+1)-TQFTS and Topological Insulators Front. Phys. 2012

[56] Wang, Zhenghan Quantum computing: a quantum group approach 2013 41 50

[57] Wang, Zhenghan Topological quantum computation 2010

[58] Wang, Zhenghan Topologization of electron liquids with Chern-Simons theory and quantum computation 2006 106 120

[59] Washington, Lawrence C. Introduction to cyclotomic fields 1997

[60] Weiss, Edwin Algebraic number theory 1976

Cité par Sources :