Voir la notice de l'article provenant de la source American Mathematical Society
Damanik, David 1 ; Goldstein, Michael 2
@article{10_1090_jams_837,
     author = {Damanik, David and Goldstein, Michael},
     title = {On the existence and uniqueness of global solutions for the {KdV} equation with quasi-periodic initial data},
     journal = {Journal of the American Mathematical Society},
     pages = {825--856},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/837},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/837/}
}
                      
                      
                    TY - JOUR AU - Damanik, David AU - Goldstein, Michael TI - On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data JO - Journal of the American Mathematical Society PY - 2016 SP - 825 EP - 856 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/837/ DO - 10.1090/jams/837 ID - 10_1090_jams_837 ER -
%0 Journal Article %A Damanik, David %A Goldstein, Michael %T On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data %J Journal of the American Mathematical Society %D 2016 %P 825-856 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/837/ %R 10.1090/jams/837 %F 10_1090_jams_837
Damanik, David; Goldstein, Michael. On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 825-856. doi: 10.1090/jams/837
[1] , The initial-value problem for the Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1975 555 601
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation Geom. Funct. Anal. 1993 209 262
[3] Periodic Korteweg de Vries equation with measures as initial data Selecta Math. (N.S.) 1997 115 159
[4] Greenâs function estimates for lattice Schrödinger operators and applications 2005
[5] Power series solution of a nonlinear Schrödinger equation 2007 131 155
[6] , , , , Sharp global well-posedness for KdV and modified KdV on â and ð J. Amer. Math. Soc. 2003 705 749
[7] , On the inverse spectral problem for the quasi-periodic Schrödinger equation Publ. Math. Inst. Hautes Ãtudes Sci. 2014 217 401
[8] Some open problems in random matrix theory and the theory of integrable systems 2008 419 430
[9] , The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21
[10] A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials Funkcional. Anal. i Priložen. 1975 41 51
[11] Theta-functions and nonlinear equations Uspekhi Mat. Nauk 1981 11 80
[12] , , Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties Uspehi Mat. Nauk 1976 55 136
[13] The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense 1994 181 208
[14] Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation Comm. Math. Phys. 1992 447 482
[15] , Korteweg-de Vries equation: a completely integrable Hamiltonian system Funct. Anal. Appl. 1971
[16] , Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions Progr. Theoret. Phys. 1976 438 456
[17] Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system J. Mathematical Phys. 1971 1548 1551
[18] , , , A method for solving the Korteweg-de Vries equation Phys. Rev. Lett. 1967
[19] , Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves 1960
[20] , Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation SIAM Rev. 1972 582 643
[21] Solutions to the Korteweg-de Vries equation with irregular initial profile Comm. Partial Differential Equations 1986 927 945
[22] , On Birkhoff coordinates for KdV Ann. Henri Poincaré 2001 807 856
[23] , KdV & KAM 2003
[24] , Global wellposedness of KdV in ð»â»Â¹(ð,â) Duke Math. J. 2006 327 360
[25] On the Korteweg-de Vries equation Manuscripta Math. 1979 89 99
[26] , , Well-posedness of the initial value problem for the Korteweg-de Vries equation J. Amer. Math. Soc. 1991 323 347
[27] , , A bilinear estimate with applications to the KdV equation J. Amer. Math. Soc. 1996 573 603
[28] Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation Mat. Sb. (N.S.) 1988
[29] Analysis of Hamiltonian PDEs 2000
[30] , Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation Ann. of Math. (2) 1996 149 179
[31] Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490
[32] , Sturm-Liouville and Dirac operators 1991
[33] Sturm-Liouville operators and applications 1986
[34] , The spectrum of Hillâs equation Invent. Math. 1975 217 274
[35] , Hillâs operator and hyperelliptic function theory in the presence of infinitely many branch points Comm. Pure Appl. Math. 1976 143 226
[36] , , Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion J. Mathematical Phys. 1968 1204 1209
[37] Periodic problem for the Korteweg-de Vries equation Translation in Funct. Anal. Jan. 1975
[38] , Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials Trudy Moskov. Mat. Obshch. 1988
[39] , Inverse spectral theory 1987
[40] , Remarks on the Korteweg-de Vries equation Israel J. Math. 1976 78 87
[41] Local well-posedness of the KdV equation with quasi-periodic initial data SIAM J. Math. Anal. 2012 3412 3428
[42] Phenomena associated with oscillations of a non-linear model string (the problem of Fermi, Pasta and Ulam) 1963
Cité par Sources :
