On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 825-856

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the KdV equation $\partial _t u +\partial ^3_x u +u\partial _x u=0$ with quasi-periodic initial data whose Fourier coefficients decay exponentially and prove existence and uniqueness, in the class of functions which have an expansion with exponentially decaying Fourier coefficients, of a solution on a small interval of time, the length of which depends on the given data and the frequency vector involved. For a Diophantine frequency vector and for small quasi-periodic data (i.e., when the Fourier coefficients obey $|c(m)| \le \varepsilon \exp (-\kappa _0 |m|)$ with $\varepsilon > 0$ sufficiently small, depending on $\kappa _0 > 0$ and the frequency vector), we prove global existence and uniqueness of the solution. The latter result relies on our recent work [Publ. Math. Inst. Hautes Études Sci. 119 (2014) 217] on the inverse spectral problem for the quasi-periodic Schrödinger equation.
DOI : 10.1090/jams/837

Damanik, David 1 ; Goldstein, Michael 2

1 Department of Mathematics, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892
2 Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George Street, Toronto, Ontario, Canada M5S 2E4
@article{10_1090_jams_837,
     author = {Damanik, David and Goldstein, Michael},
     title = {On the existence and uniqueness of global solutions for the {KdV} equation with quasi-periodic initial data},
     journal = {Journal of the American Mathematical Society},
     pages = {825--856},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2016},
     doi = {10.1090/jams/837},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/837/}
}
TY  - JOUR
AU  - Damanik, David
AU  - Goldstein, Michael
TI  - On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 825
EP  - 856
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/837/
DO  - 10.1090/jams/837
ID  - 10_1090_jams_837
ER  - 
%0 Journal Article
%A Damanik, David
%A Goldstein, Michael
%T On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
%J Journal of the American Mathematical Society
%D 2016
%P 825-856
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/837/
%R 10.1090/jams/837
%F 10_1090_jams_837
Damanik, David; Goldstein, Michael. On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data. Journal of the American Mathematical Society, Tome 29 (2016) no. 3, pp. 825-856. doi: 10.1090/jams/837

[1] Bona, J. L., Smith, R. The initial-value problem for the Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1975 555 601

[2] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation Geom. Funct. Anal. 1993 209 262

[3] Bourgain, J. Periodic Korteweg de Vries equation with measures as initial data Selecta Math. (N.S.) 1997 115 159

[4] Bourgain, J. Green’s function estimates for lattice Schrödinger operators and applications 2005

[5] Christ, M. Power series solution of a nonlinear Schrödinger equation 2007 131 155

[6] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 J. Amer. Math. Soc. 2003 705 749

[7] Damanik, David, Goldstein, Michael On the inverse spectral problem for the quasi-periodic Schrödinger equation Publ. Math. Inst. Hautes Études Sci. 2014 217 401

[8] Deift, Percy Some open problems in random matrix theory and the theory of integrable systems 2008 419 430

[9] Dinaburg, E. I., Sinaä­, Ja. G. The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21

[10] Dubrovin, B. A. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials Funkcional. Anal. i Priložen. 1975 41 51

[11] Dubrovin, B. A. Theta-functions and nonlinear equations Uspekhi Mat. Nauk 1981 11 80

[12] Dubrovin, B. A., Matveev, V. B., Novikov, S. P. Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties Uspehi Mat. Nauk 1976 55 136

[13] Egorova, I. E. The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense 1994 181 208

[14] Eliasson, L. H. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation Comm. Math. Phys. 1992 447 482

[15] Faddeev, L. D., Zakharov, V. E. Korteweg-de Vries equation: a completely integrable Hamiltonian system Funct. Anal. Appl. 1971

[16] Flaschka, H., Mclaughlin, D. W. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions Progr. Theoret. Phys. 1976 438 456

[17] Gardner, Clifford S. Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system J. Mathematical Phys. 1971 1548 1551

[18] Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. M. A method for solving the Korteweg-de Vries equation Phys. Rev. Lett. 1967

[19] Gardner, C. S., Morikawa, G. K. Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves 1960

[20] Jeffrey, A., Kakutani, T. Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation SIAM Rev. 1972 582 643

[21] Kappeler, Thomas Solutions to the Korteweg-de Vries equation with irregular initial profile Comm. Partial Differential Equations 1986 927 945

[22] Kappeler, T., Makarov, M. On Birkhoff coordinates for KdV Ann. Henri Poincaré 2001 807 856

[23] Kappeler, Thomas, Pã¶Schel, Jã¼Rgen KdV & KAM 2003

[24] Kappeler, T., Topalov, P. Global wellposedness of KdV in 𝐻⁻¹(𝕋,ℝ) Duke Math. J. 2006 327 360

[25] Kato, Tosio On the Korteweg-de Vries equation Manuscripta Math. 1979 89 99

[26] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Well-posedness of the initial value problem for the Korteweg-de Vries equation J. Amer. Math. Soc. 1991 323 347

[27] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis A bilinear estimate with applications to the KdV equation J. Amer. Math. Soc. 1996 573 603

[28] Kuksin, S. B. Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation Mat. Sb. (N.S.) 1988

[29] Kuksin, Sergei B. Analysis of Hamiltonian PDEs 2000

[30] Kuksin, Sergej, Pã¶Schel, Jã¼Rgen Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation Ann. of Math. (2) 1996 149 179

[31] Lax, Peter D. Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490

[32] Levitan, B. M., Sargsjan, I. S. Sturm-Liouville and Dirac operators 1991

[33] Marchenko, Vladimir A. Sturm-Liouville operators and applications 1986

[34] Mckean, H. P., Van Moerbeke, P. The spectrum of Hill’s equation Invent. Math. 1975 217 274

[35] Mckean, H. P., Trubowitz, E. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points Comm. Pure Appl. Math. 1976 143 226

[36] Miura, Robert M., Gardner, Clifford S., Kruskal, Martin D. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion J. Mathematical Phys. 1968 1204 1209

[37] Novikov, S. P. Periodic problem for the Korteweg-de Vries equation Translation in Funct. Anal. Jan. 1975

[38] Pastur, L. A., Tkachenko, V. A. Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials Trudy Moskov. Mat. Obshch. 1988

[39] Pã¶Schel, Jã¼Rgen, Trubowitz, Eugene Inverse spectral theory 1987

[40] Saut, J. C., Temam, R. Remarks on the Korteweg-de Vries equation Israel J. Math. 1976 78 87

[41] Tsugawa, Kotaro Local well-posedness of the KdV equation with quasi-periodic initial data SIAM J. Math. Anal. 2012 3412 3428

[42] Zabuski, N. J. Phenomena associated with oscillations of a non-linear model string (the problem of Fermi, Pasta and Ulam) 1963

Cité par Sources :