Dimers and families of Cauchy-Riemann operators I
Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 1063-1167

Voir la notice de l'article provenant de la source American Mathematical Society

In the dimer model, a configuration consists of a perfect matching of a fixed graph. If the underlying graph is planar and bipartite, such a configuration is associated to a height function. For appropriate “critical” (weighted) graphs, this height function is known to converge in the fine mesh limit to a Gaussian free field, following in particular Kenyon’s work. In the present article, we study the asymptotics of smoothed and local field observables from the point of view of families of Cauchy-Riemann operators and their determinants. This allows one in particular to obtain a functional invariance principle for the field; characterise completely the limiting field on toroidal graphs as a compactified free field; analyze electric correlators; and settle the Fisher-Stephenson conjecture on monomer correlators. The analysis is based on comparing the variation of determinants of families of (continuous) Cauchy-Riemann operators with that of their discrete (finite dimensional) approximations. This relies in turn on estimating precisely inverting kernels, in particular near singularities. In order to treat correlators of “singular” local operators, elements of (multiplicatively) multivalued discrete holomorphic functions are discussed.
DOI : 10.1090/jams/824

Dubédat, Julien 1

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
@article{10_1090_jams_824,
     author = {Dub\~A{\textcopyright}dat, Julien},
     title = {Dimers and families of {Cauchy-Riemann} operators {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {1063--1167},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2015},
     doi = {10.1090/jams/824},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/824/}
}
TY  - JOUR
AU  - Dubédat, Julien
TI  - Dimers and families of Cauchy-Riemann operators I
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 1063
EP  - 1167
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/824/
DO  - 10.1090/jams/824
ID  - 10_1090_jams_824
ER  - 
%0 Journal Article
%A Dubédat, Julien
%T Dimers and families of Cauchy-Riemann operators I
%J Journal of the American Mathematical Society
%D 2015
%P 1063-1167
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/824/
%R 10.1090/jams/824
%F 10_1090_jams_824
Dubédat, Julien. Dimers and families of Cauchy-Riemann operators I. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 1063-1167. doi: 10.1090/jams/824

[1] Adams, Robert A. Sobolev spaces 1975

[2] Alvarez-Gaumã©, Luis, Bost, Jean-Benoã®T, Moore, Gregory, Nelson, Philip, Vafa, Cumrun Bosonization on higher genus Riemann surfaces Comm. Math. Phys. 1987 503 552

[3] Benjamini, Itai, Schramm, Oded Recurrence of distributional limits of finite planar graphs Electron. J. Probab. 2001

[4] Berline, Nicole, Getzler, Ezra, Vergne, Michã¨Le Heat kernels and Dirac operators 2004

[5] Borodin, Alexei, Ferrari, Patrik L. Anisotropic growth of random surfaces in 2+1 dimensions Comm. Math. Phys. 2014 603 684

[6] Boutillier, Cã©Dric, De Tiliã¨Re, Bã©Atrice Loop statistics in the toroidal honeycomb dimer model Ann. Probab. 2009 1747 1777

[7] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations 2011

[8] Chandrasekharan, K. Elliptic functions 1985

[9] Chelkak, Dmitry, Smirnov, Stanislav Discrete complex analysis on isoradial graphs Adv. Math. 2011 1590 1630

[10] Cimasoni, David, Reshetikhin, Nicolai Dimers on surface graphs and spin structures. I Comm. Math. Phys. 2007 187 208

[11] Ciucu, Mihai Dimer packings with gaps and electrostatics Proc. Natl. Acad. Sci. USA 2008 2766 2772

[12] Ciucu, Mihai The emergence of the electrostatic field as a Feynman sum in random tilings with holes Trans. Amer. Math. Soc. 2010 4921 4954

[13] Cohn, Henry, Kenyon, Richard, Propp, James A variational principle for domino tilings J. Amer. Math. Soc. 2001 297 346

[14] De Tiliã¨Re, Bã©Atrice Quadri-tilings of the plane Probab. Theory Related Fields 2007 487 518

[15] B. De Tiliã¨Re Scaling limit of isoradial dimer models and the case of triangular quadri-tilings Ann. Inst. H. Poincaré Probab. Stat. 2007

[16] Di Francesco, Philippe, Mathieu, Pierre, Sã©Nã©Chal, David Conformal field theory 1997

[17] Di Francesco, P., Saleur, H., Zuber, J.-B. Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models J. Statist. Phys. 1987 57 79

[18] Dubã©Dat, Julien SLE and the free field: partition functions and couplings J. Amer. Math. Soc. 2009 995 1054

[19] Dubã©Dat, Julien Topics on abelian spin models and related problems Probab. Surv. 2011 374 402

[20] Duffin, R. J. Potential theory on a rhombic lattice J. Combinatorial Theory 1968 258 272

[21] Farkas, H. M., Kra, I. Riemann surfaces 1992

[22] Fay, John Kernel functions, analytic torsion, and moduli spaces Mem. Amer. Math. Soc. 1992

[23] Fay, John D. Theta functions on Riemann surfaces 1973

[24] Fisher, Michael E., Stephenson, John Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers Phys. Rev. (2) 1963 1411 1431

[25] Gawè©Dzki, Krzysztof Lectures on conformal field theory 1999 727 805

[26] Glimm, James, Jaffe, Arthur Quantum physics 1987

[27] Gohberg, I. C., Kreä­N, M. G. Introduction to the theory of linear nonselfadjoint operators 1969

[28] Grimmett, Geoffrey R., Manolescu, Ioan Inhomogeneous bond percolation on square, triangular and hexagonal lattices Ann. Probab. 2013 2990 3025

[29] Hartwig, Robert E. Monomer pair correlations J. Mathematical Phys. 1966 286 299

[30] Janson, Svante Gaussian Hilbert spaces 1997

[31] Kang, Nam-Gyu, Makarov, Nikolai G. Gaussian free field and conformal field theory Astérisque 2013

[32] Kasteleyn, P. W. The statistics of dimers on a lattice. i. the number of dimer arrangements on a quadratic lattice Physica 1961

[33] Kenyon, Richard Local statistics of lattice dimers Ann. Inst. H. Poincaré Probab. Statist. 1997 591 618

[34] Kenyon, Richard The asymptotic determinant of the discrete Laplacian Acta Math. 2000 239 286

[35] Kenyon, Richard Conformal invariance of domino tiling Ann. Probab. 2000 759 795

[36] Kenyon, Richard Dominos and the Gaussian free field Ann. Probab. 2001 1128 1137

[37] Kenyon, R. The Laplacian and Dirac operators on critical planar graphs Invent. Math. 2002 409 439

[38] Kenyon, Richard Height fluctuations in the honeycomb dimer model Comm. Math. Phys. 2008 675 709

[39] Kenyon, Richard Lectures on dimers 2009 191 230

[40] Kenyon, Richard Conformal invariance of loops in the double-dimer model Comm. Math. Phys. 2014 477 497

[41] Kenyon, Richard, Okounkov, Andrei, Sheffield, Scott Dimers and amoebae Ann. of Math. (2) 2006 1019 1056

[42] Kenyon, Richard, Schlenker, Jean-Marc Rhombic embeddings of planar quad-graphs Trans. Amer. Math. Soc. 2005 3443 3458

[43] Kenyon, Richard W., Propp, James G., Wilson, David B. Trees and matchings Electron. J. Combin. 2000

[44] Ledoux, Michel, Talagrand, Michel Probability in Banach spaces 1991

[45] Mercat, Christian Discrete Riemann surfaces and the Ising model Comm. Math. Phys. 2001 177 216

[46] Mercat, C. Discrete Polynomials and Discrete Holomorphic Approximation 2002

[47] Nienhuis, Bernard Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas J. Statist. Phys. 1984 731 761

[48] Nienhuis, B., Knops, H. J. F. Spinor exponents for the two-dimensional potts model Phys. Rev. B 1985

[49] Palmer, John Determinants of Cauchy-Riemann operators as 𝜏-functions Acta Appl. Math. 1990 199 223

[50] Percus, Jerome K. One more technique for the dimer problem J. Mathematical Phys. 1969 1881 1888

[51] Pinson, Haru Rotational invariance and discrete analyticity in the 2d dimer model Comm. Math. Phys. 2004 355 382

[52] Priezzhev, V. B., Ruelle, P. Boundary monomers in the dimer model Phys. Rev. E 2008 061126

[53] Kvillen, D. Determinants of Cauchy-Riemann operators on Riemann surfaces Funktsional. Anal. i Prilozhen. 1985

[54] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds Ann. of Math. (2) 1973 154 177

[55] Sheffield, Scott Gaussian free fields for mathematicians Probab. Theory Related Fields 2007 521 541

[56] Simon, Barry The 𝑃(𝜙)₂ Euclidean (quantum) field theory 1974

[57] Simon, Barry Trace ideals and their applications 2005

[58] Smirnov, Stanislav Towards conformal invariance of 2D lattice models 2006 1421 1451

[59] Smirnov, Stanislav Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model Ann. of Math. (2) 2010 1435 1467

[60] Stroock, Daniel W. Partial differential equations for probabilists 2012

[61] Van Beijeren, H. Exactly solvable model for the roughening transition of a crystal surface Phys. Rev. Lett. 1977

[62] Voisin, C. Hodge theory and complex algebraic geometry. I 2007

Cité par Sources :