Parusinski’s “Key Lemma” via algebraic geometry
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 136-145
Cet article a éte moissonné depuis la source American Mathematical Society
The following “Key Lemma” plays an important role in the work by Parusiński on the existence of Lipschitz stratifications in the class of semianalytic sets: For any positive integer $n$, there is a finite set of homogeneous symmetric polynomials $W_1, \dots ,W_N$ in $Z[x_1,\dots ,x_n]$ and a constant $M >0$ such that \[ |dx_i/x_i| \le M \max _{j = 1, \dots , N} |dW_j/W_j| \; , \] as densely defined functions on the tangent bundle of $\mathbb {C}^n$. We give a new algebro-geometric proof of this result.
Affiliations des auteurs :
Reichstein, Z. 1 ; Youssin, B. 2, 3
@article{10_1090_S1079_6762_99_00072_4,
author = {Reichstein, Z. and Youssin, B.},
title = {Parusinski{\textquoteright}s {{\textquotedblleft}Key} {Lemma{\textquotedblright}} via algebraic geometry},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {136--145},
year = {1999},
volume = {05},
doi = {10.1090/S1079-6762-99-00072-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00072-4/}
}
TY - JOUR AU - Reichstein, Z. AU - Youssin, B. TI - Parusinski’s “Key Lemma” via algebraic geometry JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 136 EP - 145 VL - 05 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00072-4/ DO - 10.1090/S1079-6762-99-00072-4 ID - 10_1090_S1079_6762_99_00072_4 ER -
%0 Journal Article %A Reichstein, Z. %A Youssin, B. %T Parusinski’s “Key Lemma” via algebraic geometry %J Electronic research announcements of the American Mathematical Society %D 1999 %P 136-145 %V 05 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00072-4/ %R 10.1090/S1079-6762-99-00072-4 %F 10_1090_S1079_6762_99_00072_4
Reichstein, Z.; Youssin, B. Parusinski’s “Key Lemma” via algebraic geometry. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 136-145. doi: 10.1090/S1079-6762-99-00072-4
[1] Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples 1958
[2] Fixed rings of finite automorphism groups of associative rings 1980
[3] , , Geometric invariant theory 1994
[4] Lipschitz properties of semi-analytic sets Ann. Inst. Fourier (Grenoble) 1988 189 213
[5] Basic algebraic geometry 1974
Cité par Sources :